## DESAIN DAN IMPLEMENTASI SECOND ORDER GENERALIZED INTEGRATOR-PHASE LOCKED LOOP (SOGI-PLL) UNTUK TEGANGAN SATU FASA MENGGUNAKAN DSPIC30F4011 DENGAN KONTROL PROPORTIONAL INTEGRAL

## Aji Purwanto<sup>\*)</sup>, Iwan Setiawan, and Bambang Winardi

Departemen Teknik Elektro, Universitas Diponegoro Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia

\*)E-mail: purwantoaji11@gmail.com

## Abstrak

*Grid Side Converter* (GSC) merupakan perangkat konverter daya yang berperan penting dalam sistem konversi energi listrik terutama dalam pemanfaatan sumber energi terbarukan untuk dapat terkoneksi dengan *grid*. Berdasarkan kebutuhan interkoneksi jaringan, sistem GSC harus tetap dapat beroperasi dan terkoneksi meskipun jaringan mengalami interferensi. Berdasarkan masalah tersebut, dibutuhkan metode yang memiliki kemampuan mendeteksi gangguan secara cepat dalam sistem sinkronisasi antara GSC dengan grid secara akurat, yaitu dengan menggunakan metode *Phase Locked Loop* (PLL) yang dapat menyediakan informasi tegangan jaringan. Dibandingkan dengan algoritma PLL lainnya, *Second Order Generalized Integrator-Phase Locked Loop* (SOGI-PLL) memiliki karakteristik *adaptive-filtering* dalam penyesuaian informasi fase ketika jaringan mengalami gangguan. Metode SOGI-PLL dalam Penelitian ini akan diimplementasikan untuk sistem tegangan satu fasa menggunakan mikrokontroler dsPIC30F4011 dengan kontroler PI. Kontroler PI diharapkan mampu memiliki respon yang cepat terhadap perubahan yang terjadi, dikarenakan tujuan dari kebutuhan PLL itu sendiri adalah mendapatkan informasi tegangan jaringan berupa *magnitude*, frekuensi, dan fase secara realtime. Hasil pengujian algoritma SOGI-PLL melalui penggunaan sensor ZMPT101B menunjukkan informasi *magnitude*, frekuensi, dan fase sesuai dengan tegangan jaringan. Hasil estimasi fase ini juga sudah diimplementasikan pada proyek pengembangan produk *inverter*, sehingga tegangan keluaran *inverter* sudah sefase terhadap tegangan jaringan.

Kata kunci: SOGI-PLL, dsPIC30f4011, tegangan jaringan, magnitude, frekuensi, fase

## Abstract

Grid Side Converter (GSC) is a power converter device that have important role in electrical energy conversion systems especially in the utilization of renewable energy sources in order to be connected to the grid. Based on the grid connection requirements, the GSC should be able to operate even if the grid is experiencing interference. Based on the problem, the GSC control system technically should have ability to detect grid disturbances quickly by using Phase Locked Loop (PLL) method that can provide grid voltage information. Compared with other PLL algorithms, the Second Order Generalized Integrator-Phase Locked Loop (SOGI-PLL) has adaptive-filtering characteristics in adjusting phase information. The SOGI-PLL method in this final project will be implemented for single phase system using dsPIC30F4011 microcontroller with PI controller. PI controller is expected to make the system has a fast response to the changes that occur, because the purpose of the PLL's own needs is to get the results of grid voltage information such as magnitude, frequency, and phase in realtime. As the results, the SOGI-PLL algorithm through the use of ZMPT101B sensor shows the magnitude, frequency, and phase information is suitable with the grid voltage. The result of phase estimation have also been implemented in the inverter product development project, so that the output voltage inverter is in phase with the grid voltage.

Keywords: SOGI-PLL, dsPIC30f4011, grid voltage, magnitude, frequency, phase

## 1. Pendahuluan

Revolusi sistem kelistrikan meningkat cukup signifikan sejak pengenalan teknologi *Distributed Generation* (DG) dan *Renewable Energy Sources* (RES) terhadap jaringan listrik yang saling terdistribusi kedalam sistem interkoneksi jaringan untuk menggantikan sistem pembangkit konvensional [1][2]. Konverter terkoneksi jaringan (*Grid Side Converter*) merupakan salah satu komponen elektronika daya yang berperan penting dalam sistem konversi energi listrik. Melalui sistem DG, skema teknologi GSC diterapkan sebagai jembatan penghubung antara sumber energi terbarukan dan jaringan listrik [3][4].

Berdasarkan kebutuhan interkoneksi jaringan (grid connection requirements), sistem GSC harus tetap dapat beroperasi dan terkoneksi walaupun jaringan tersebut sedang mengalami interferensi, misalnya kerusakan perangkat jaringan, koneksi dan interkoneksi beban listrik vang relatif besar, ketidakseimbangan tegangan, dan harmonisa [4]. Berdasarkan masalah tersebut, diperlukan sistem kontrol GSC secara teknis haruslah memiliki kemampuan mendeteksi gangguan secara cepat untuk dapat melakukan sinkronisasi antara GSC dengan jaringan listrik secara akurat [3][4]. Sinkronisasi ini menggunakan metode *Phase Locked Loop* (PLL) yang dapat menyediakan informasi tegangan jaringan, seperti magnitude, frekuensi, dan sudut fase.

Dibandingkan dengan algoritma PLL lainnya [4]–[10], Second Order Generalized Integrator-Phase Locked Loop (SOGI-PLL) memiliki karakteristik adaptive-filtering dalam penyesuaian informasi fase ketika jaringan mengalami gangguan sehingga dapat meningkatkan performa sistem PLL tegangan satu fasa [7][8].

Penelitian ini bertujuan dalam perancangan produk untuk pengaplikasian SOGI-PLL dengan modifikasi sinyal SOGI-QSG untuk tegangan satu fasa menggunakan mikrokontroler 16-bit dsPIC30F4011 dengan kontroler PI, dimana kontroler PI diharapkan akan membuat sistem memiliki respon yang cepat terhadap perubahan yang terjadi, dikarenakan tujuan dari kebutuhan PLL itu sendiri, akan didapatkan hasil data tegangan jaringan berupa *magnitude* (V<sub>PEAK</sub>), frekuensi, dan fase yang akan dibandingkan dengan hasil dari simulasi SOGI-PLL pada simulink MATLAB.

## 2. Metode

## 2.1. Perancangan Algoritma SOGI-PLL

Teknik SOGI (Second Order Generalized Intgerator-Phase Locked Loop) pada dasarnya dapat menghasilkan sepasang sinyal orthogonal dan telah terfilter melalui blok SOGI tersebut. Perancangan algoritma SOGI pada Penelitian ini ditunjukkan pada Gambar 1.



Gambar 1. Diagram Blok Algoritma SOGI-PLL Satu Fasa Dengan Kontrol Proportional Integral

Blok SOGI-PLL 1 fasa terdiri atas: (1) Blok SOGI-QSG dan (2) Blok kontrol umpan balik sudut fase, dimana  $\omega_0$  adalah frekuensi nominal dari tegangan jaringan dan  $k_e$  adalah parameter kontrol sistem filter [7].

Blok SOGI-QSG berfungsi untuk membangkitkan sinyal orthogonal dari tegangan jaringan masukan, yaitu V<sub>a</sub> (tegangan jaringan) dan V<sub>β</sub> yang berbeda sudut fase 90° dari V<sub>a</sub> [3]–[6]. Implementasi kedalam bentuk digital diberikan menggunakan persamaan *euler forward*. Berikut adalah persamaan dalam proses diskritisasi struktur SOGI-QSG [8].

$$e[n] = u[n] - y[n-1],$$
(1)

$$y[n] = y[n-1] + (e[n].k - y'[n-1]).\omega_0.T_s, \qquad (2)$$

$$y'[n] = y'[n-1] + y[n].\,\omega_0.\,T_s,\tag{3}$$

Variabel e[n] adalah *error* yang diberikan antara sinyal masukan u[n] dengan sinyal y[n-1] yang mana akan digunakan untuk membangkitkan sinval v[n] ditunjukkan pada Persamaan 1 dan 2. Sinyal y[n] adalah tegangan jaringan saat ini dan sinyal y[n-1] adalah tegangan jaringan sebelumnya. Sinyal y'[n] adalah tegangan quadrature yang mana memiliki perbedaan sudut fase 90° terhadap sinyal masukan, sinyal ini dibangkitkan melalui Persamaan 3 dan sinyal y'[n] adalah tegangan *quadrature* sebelumnya. Variabel k,  $\omega_0$ ,  $T_s$  masing-masing merupakan konstanta filter SOGI, omega jaringan, dan waktu sampling data. Sistem perhitungan akan melakukan tahap iterasi secara tertutup sehingga menghasilkan dua sinyal keluaran akhir, yaitu y[n] (V<sub>a</sub>) sebagai V<sub>input</sub> tegangan jaringan dan y'[n] (V<sub>β</sub>) sebagai V<sub>quadrature</sub> dari tegangan jaringan.

Sinyal  $V_{\alpha}$  dan  $V_{\beta}$  yang telah didapatkan, selanjutnya ditransformasikan kedalam bentuk *orthogonal rotating reference* pada blok transformasi Park. Berikut ini adalah persamaan matriks Transformasi Park [7].

$$\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \begin{bmatrix} \cos \hat{\theta} & \sin \hat{\theta} \\ -\sin \hat{\theta} & \cos \hat{\theta} \end{bmatrix} \begin{bmatrix} V_\alpha \\ V_\beta \end{bmatrix}$$

$$= \begin{bmatrix} V_m \cdot \cos(\Delta \theta) \\ V_m \cdot \sin(\Delta \theta) \end{bmatrix} \begin{bmatrix} V_\alpha \\ V_\beta \end{bmatrix}$$
(4)

Hasil transformasi Park dalam Persamaan 4 adalah berupa  $V_d \, dan \, V_q$ , dimana  $V_d$  merupakan nilai *magnitude* tegangan  $(V_{PEAK}) \, dan \, V_q$  merupakan vektor tegangan fase. Nilai  $\Delta \theta$  adalah kesalahan fase yang terdeteksi  $(\Delta \theta = \theta - \hat{\theta}) \, dan \, \hat{\theta}$  adalah sudut fase estimasi. Sebenarnya dalam kondisi *steady-state* kesalahan  $\Delta \theta$  adalah sangat kecil, sehingga didapatkan rumus penyederhanaan sebagai berikut [7].

$$\begin{bmatrix} I_d \\ I_q \end{bmatrix} \approx \begin{bmatrix} I_m \cdot 1 \\ I_m \cdot (\Delta \theta = 0) \end{bmatrix} \approx \begin{bmatrix} I_m \\ 0 \end{bmatrix}$$
(5)

Dari Persamaan 5, diketahui bahwa nilai  $V_q$  bisa dikontrol posisi referensi sudut rotasinya ( $\theta$ ) agar bernilai nol dengan menggunakan sebuah kontroler PI dengan *loop* umpan balik. Gambar 2 menunjukkan diagram fasor dari vektor sinyal tegangan [6], [7]. Vektor referensi d-q akan merepresentasikan informasi fase sinyal *input* tegangan jaringan.



Gambar 2. Diagram Fasor  $V_{\alpha}$ - $V_{\beta}$  dan  $V_{d}$ - $V_{q}$  [6]

## 2.2. Perancangan Simulasi SOGI-PLL

Simulasi algoritma SOGI-PLL dilakukan melalui software MATLAB v.2014a. Tahap simulasi dilakukan untuk mengetahui kinerja sistem sebelum dilakukan implementasi pada hardware. Gambar 3 menunjukkan blok simulasi simulink SOGI-PLL. Blok SOGI-PLL terdiri dari 3 blok proses, yaitu blok input, blok QSG, dan blok PLL. Blok input berfungsi melakukan pembangkitan gelombang sinusoidal dengan magnitude 353,55 ( $250\sqrt{2}$ ) V. Blok QSG berisikan pembangkitan 2 gelombang melalui algoritma SOGI, yaitu  $V_{\alpha}$ dan  $V_{\beta}$ . Blok PLL terdiri dari 2 bagian utama, yaitu blok transformasi Park dan algoritma kontrol PLL.



Gambar 3. Simulasi Simulink SOGI-PLL

Blok simulink QSG berfungsi untuk membangkitkan 2 sinyal, yaitu sinyal masukan dan sinyal *quadrature*-nya dengan beda sudut fase 90° terhadap sinyal masukan. Gambar 4 menunjukkan diagram blok simulink SOGI-QSG.



Gambar 4. Diagram Blok Simulink SOGI-QSG

Proses pembangkitan sinyal pada blok SOGI-QSG terjadi secara *feedback* tertutup. Pemilihan parameter K dalam Penelitian ini digunakan K = 0,999 karena menghasilkan filter keluaran sinyal yang paling baik [8]. Hasil akhir dari blok SOGI-QSG berupa sinyal  $V_{\alpha}$  dan  $V\beta$  yang kemudian masuk kepada blok algoritma kontrol pada Gambar 5.



Gambar 5. Diagram Blok Kontrol PLL

Sinyal  $V_{\alpha}$  dan  $V_{\beta}$  akan ditransformasikan kedalam orthogonal rotating reference, yaitu V<sub>d</sub> dan V<sub>q</sub>. Nilai V<sub>d</sub> menunjukkan nilai magnitude dari tegangan dan nilai V<sub>q</sub> menunjukkan vektor tegangan. Nilai  $V_q$ akan dibandingkan dengan nilai konstan  $V_q = 0$  karena nilai  $V_q$  sesungguhnya bernilai 0. Keluaran hasil perbandingan diberikan kontrol PI. Nilai Kp dan Ki diperoleh dengan cara empiris. Keluaran kontrol PI menghasilkan sinyal kontrol yang kemudian ditambahkan dengan bias. Bias itu sendir merupakan nilai omega yang bernilai  $2\pi f$  dengan f = 50 Hz. Keluaran dari kontrol PI dan bias akan dijumlahkan menjadi nilai omega terbaru. Nilai frekuensi didapatkan dengan mengalikan nilai omega dengan  $1/2\pi$ . Nilai omega selanjutnya diintegralkan untuk mendapatkan nilai fase dalam fungsi *mod* bersama dengan konstanta  $2\pi$  radian sudut. Hasil dari simulasi MATLAB ini digunakan sebagai acuan dalam implementasi hardware.

## 2.3. Perancangan Perangkat Keras

Perancangan perangkat keras dalam Penelitian ini terdiri dari 3 bagian utama, yaitu sensor tegangan AC, mikrokontroler dsPIC30F4011, dan sistem *display*.

Sensor tegangan AC terdiri dari sensor ZMPT101B yang terhubung langsung dengan sumber tegangan PLN AC 1 fasa 220-230 V. Mikrokontroler dsPIC30F4011 digunakan sebagai tempat berjalannya program SOGI-PLL. Sistem display terdiri dari interkoneksi antara DAC AD7302 dengan sismin dsPIC30F4011 dan kemudian ditampilkan melalui *oscilloscope* untuk pengukuran data tegangan jaringan berupa frekuensi, *magnitude*, dan gelombang fase. Diagram blok perancangan perangkat keras yang dirancang pada Penelitian ini ditunjukkan pada Gambar 6.



Gambar 6. Diagram Blok Perancangan Sistem

Diagram blok pada Gambar 6 menunjukkan skema alur dari alat yang akan dibuat pada Penelitian ini. Berikut spesifikasi tiap – tiap bloknya.

- 1. Sensor ZMPT101B digunakan untuk menurunkan tegangan masukan 1 fasa kedalam jangkauan pengukuran mikrokontroler yaitu 0–5VAC dengan titik *offset* pada 2,5V, sehingga dapat diproses oleh mikrokontroler dsPIC30F4011.
- Mikrokontroler 16-Bit dsPIC30F4011 digunakan untuk memproses *output* data dari sensor ZMPT101B, antara lain melakukan pembacaan ADC dan algoritma SOGI-PLL.
- Komputer / Laptop digunakan untuk membuat program dan mengunggahnya ke mikrokontroler via PICkit2.
- 4. Modul DAC 8-bit digunakan untuk perangkat *monitoring* pembacaan hasil keluaran sinyal mikrokontroler dengan 2-*channel* yang diamati melalui *oscilloscope*.

Gambar 7 menunjukkan rangkaian alat secara keseluruhan dalam Penelitian ini.



Gambar 7. Skema Perancangan Hardware Secara Keseluruhan

## 2.3.1. Sensor ZMPT101B

Sensor ZMPT101B merupakan sensor yang digunakan untuk melakukan pengukuran tegangan AC 1 fasa kedalam bentuk data digital. Rangkaian sensor tegangan dirancang untuk mengukur tegangan AC dengan jangkauan ukur  $\leq 250 \text{ V}_{AC}$ . Sensor ZMPT101B ini dicatu oleh mikrokontroler dsPIC30F4011. Sensor ZMPT101B dilengkapi dengan *gain* dalam sistem pengukurannya. Nilai *gain* ini haruslah diatur untuk mengetahui besar

penguatan yang dikeluarkan oleh sensor ZMPT101B dalam rentang 0–5  $V_{AC}$  sesuai dengan tegangan masukannya. Kalibrasi dilakukan melalui pengukuran *oscilloscope* untuk mengetahui gelombang keluaran pada ZMPT101B.

## 2.3.2. Alokasi Pin Mikrokontroler

Mikrokontroler yang digunakan dalam Penelitian ini adalah mikrokontroler dsPIC30F4011 yang berfungsi

sebagai pemrosesan program SOGI-PLL. dsPIC30F4011 memiliki 5 *port* utama yaitu *PORT* RB, *PORT* RC, *PORT* RD, *PORT* RE, dan *PORT* RF serta memiliki total pin berjumlah 20 pin. *PORT* RB pada pin RB7/AN7 digunakan sebagai masukan analog (ADC0) data ZMPT101B pada Penelitian ini, *PORT* RF pada pin RF0-RF6 sebagai koneksi serial dan keluaran data digital yang terhubung ke modul DT-I/O DAC 8-bit (modul DAC), PORT RD pada pin RD1 sebagai Kontrol *chip select* (A/B) dan pin RD1 sebagai masukan *write* untuk modul DAC.

#### 2.3.3. Alokasi Pin DAC-8bit AD7302

Pin DAC yang digunakan pada *PORT* J1 hanya pin Ā/B yang dihubungkan ke pin RD1 dsPIC30F4011 dan pin WR yang dihubungkan ke pin RD0 dsPIC30F4011 sebagai *input write*. Pin yang digunakan pada *PORT* J2 yaitu pin D0-D7, dimana pin D1-D7 dihubungkan ke pin RF0-RF6 dsPIC30F4011 sedangkan pin D0 dihubungkan ke Vss dsPIC30F4011. Terakhir adalah *PORT* J3 yang berfungsi sebagai *port* keluaran data analog, dimana pada *port* ini pin AOUT dihubungkan dengan *probe channel* 1 *oscilloscope* dan pin AGND dihubungkan dengan *ground channel* 1 *oscilloscope*, BOUT dihubungkan dengan *ground channel* 2 *oscilloscope*.

## 3. Hasil dan Analisis

Implementasi algoritma SOGI-PLL yang telah dilakukan pada *hardware* akan dibandingkan hasilnya terhadap blok simulink MATLAB. Gambar 8 menunjukkan *hardware* secara keseluruhan.



Gambar 8. Tampilan Hardware Secara Keseluruhan

Pada bagian *hardware*, yang pertama akan dilakukan pengujian terhadap sensor ZMPT101B yang berfungsi untuk menjadikan tegangan masukan AC 1 fasa 220-230  $V_{AC}$  menjadi 0-5  $V_{AC}$  yang dapat dibaca oleh mikrokontroler. Bagian kedua akan dilakukan pengujian terhadap hasil estimasi algoritma SOGI-PLL terhadap tegangan jaringan masukan yang dikirim ke DAC untuk selanjutnya ditampilkan pada *oscilloscope*. Berikut ini Tabel 1 yang merupakan variabel penelitian dalam Penelitian ini.

#### Tabel 1.Variabel Penelitian

| Variabel                               | Nilai                      |
|----------------------------------------|----------------------------|
| Tegangan masukan AC ZMPT101B           | ≤ 250 V                    |
| Catu daya masukan ZMPT101B             | 4,7 – 5 V (Mikrokontroler) |
| Tegangan Referensi mikrokontroler      | 4,7 – 5V                   |
| Masukan <i>magnitude</i> pada simulasi | 353,55 V                   |
| Frekuensi bias pada program            | 49 Hz                      |
| Base Frekuensi pada program            | 51 Hz                      |
| Base magnitude                         | 353,55 V                   |

## 3.1. Pengujian Sensor ZMPT101B

*Hardware* pada Gambar 8 digunakan untuk melakukan proses komputasi data pada algoritma SOGI-PLL. Kalibrasi pada sensor ZMPT101B perlu dilakukan untuk memastikan keluaran tegangan berupa gelombang sinusoidal murni dalam rentang 0-5  $V_{AC}$  dengan titik *offset* sekitar 2,5 V. Pengaturan kalibrasi dilakukan dengan memutar trimpot untuk mengetahui besar *gain* yang dikeluarkan oleh sensor ZMPT101B. Gambar 9 merupakan gelombang keluaran sensor ZMPT101B yang telah diatur sedemikian sehingga didapatkan keluaran gelombang sebagai berikut.



Gambar 9. Kalibrasi sensor ZMPT101B (1V/div) (5ms/div)

Pengaturan *gain* yang dilakukan pada sensor ZMPT101B sebesar  $V_{PP} = 2,32$  V dilakukan pada tegangan terukur  $V_{AC} = 250 V_{AC}$  menggunakan Variac 250  $V_{AC}$ , dimana nilai  $V_{PP}$  adalah tegangan puncak antara positif dengan negatif gelombang keluaran ZMPT101B. Gelombang tersebut berosilasi pada nilai minimum 1,28 V dan nilai maksimum 3,6 V dengan titik *offset*  $V_{DC}$  sebesar 2,432 V. Nilai *offset* ini tidak bernilai 2,5 V dikarenakan menyesuaikan tegangan pada pengaturan kalibrasi ini sudah sesuai dengan kebutuhan mikrokontroler.

# **3.2. Pembacaan Hasil** *Quadrature Signal Generator*

Pada subbab ini, akan dilakukan pembacaan hasil QSG menggunakan metode *second order generalized integrator* yang hasilnya merupakan  $V_{\alpha}$  dan  $V_{\beta}$ . Tegangan  $V_{\alpha}$  dan  $V_{\beta}$ 

selanjutnya akan digunakan sebagai masukan bagi transformasi Park, dengan gelombang  $V_{\alpha}$  idealnya berbeda fase dengan  $V_{\beta}$  sebesar 90°.



Gambar 10. Gelombang  $V_{\alpha}$  dan  $V_{\beta}$  Simulink MATLAB

Gambar 10 menunjukkan hasil penerapan metode SOGI-QSG pada simulink MATLAB dengan hasil berupa V<sub> $\alpha$ </sub> dan V<sub> $\beta$ </sub> yang berbeda fase 90° dicapai dalam waktu 0,045 s (penyesuaian *error feedback*) dengan bentuk gelombang yang sama.



Gambar 11. Gelombang  $V_{\alpha}$  dan  $V_{\beta}$  (1V/div)(5ms/div)

Gambar 11 di atas merupakan gelombang V<sub>a</sub> (merah) dan V<sub>β</sub> (kuning) hasil *running* program SOGI-PLL pada alat. Jika dibandingkan, hasil dari *running* alat dengan simulasi simulink matlab, keluaran Va dan Vβ sudah sesuai dengan kondisi yang seharusnya, yaitu V<sub>a</sub> dan V<sub>β</sub> berbeda fase 90° atau bisa dikatakan bahwa V<sub>a</sub> merupakan sinusoidal dan V<sub>β</sub> merupakan gelombang cosinus.

## 3.3. Pembacaan Nilai Magnitude

Nilai *magnitude* dari sebuah tegangan bisa didapatkan merubah tegangan masukan menjadi  $V_{\alpha}$  dan  $V_{\beta}$ menggunakan algoritma QSG, selanjutnya  $V_{\alpha}$  dan  $V_{\beta}$  akan masuk ke transformasi Park. Hasil dari transformasi Park adalah nilai  $V_d$  dan  $V_q$ . Gambar 12 menunjukkan gelombang  $V_d$  dengan nilai konstan pada pada nilai 353,55 V (250 $\sqrt{2}$ ) yang menunjukan *magnitude* dari tegangan 1 fasa yang digunakan sebagai *base* ukur sensor. Osilasi yang terjadi di awal gelombang disebabkan penyesuaian *error feedback* selama 0,045 s. Pengujian *magnitude* yang dilakukan pada alat, yaitu saat tegangan terukur *magnitude* 321,73 V dengan sumber tegangan AC  $V_{RMS}$  sebesar 220-230 V.



Gambar 12. Magnitude Keluaran Simulasi MATLAB



Gambar 13. Magnitude Hasil Pembacaan SOGI-PLL (1V/div)(5ms/div)

Gambar 13 menunjukkan bahwa *magnitude* keluaran pengujian SOGI-PLL konstan pada garis 3,491 V. Perhitungan *magnitude* aktual dihitung dengan persamaan berikut.

$$V_{Mag. Aktual} = \frac{(V_{Sensor} - V_{Titik \, Offset})}{(V_{Base \, Sensor} - V_{Titik \, Offset})} xBase$$
(6)  
$$V_{Mag. Aktual} = \frac{(3,491 - 2,45)}{(3,6-2,45)} x 353,55 = 320,04 V$$

Hasil perhitungan didapatkan data estimasi perhitungan magnitude tegangan AC sebesar  $\pm$  320,04 V dengan pengukuran multimeter sebesar 321,73 V. Perbedaan nilai disebabkan pembacaan data sensor ZMPT101B memiliki sifat induktif pada transformator internal sehingga mempengaruhi nilai pembacaan tegangan. Namun perbedaan nilai yang kecil ini menunjukkan bahwa algoritma PLL dapat melakukan pembacaan *magnitude* dengan baik dan mendekati pengukuran ideal.

## 3.4. Pembacaan Nilai Frekuensi

Pembacaan nilai frekuensi didapatkan dari nilai omega gelombang yang dibangkitkan. Terdapat masukan bias

pada diagram blok simulink SOGI-PLL berupa omega bias ( $\omega bias = 2\pi f$ ), dimana omega bias akan dijumlahkan dengan keluaran kontrol PI, dari omega bias ini bisa didapatkan nilai frekeunsi dengan mengalikan hasil dari penjumlahan omega bias dengan keluaran kontrol PI. Nilai frekuensi diperoleh dengan mengalikan omega dengan  $1/2\pi$ . Berikut hasil gelombang frekuensi dari simulasi simulink MATLAB pada Gambar 14.



Gambar 14. Frekuensi Keluaran Simulasi Simulink MATLAB

Gambar 14 menunjukkan bahwa nilai frekuensi stabil pada garis 50, artinya nilai frekuensi yang terukur pada hasil simulasi sudah stabil pada nilai 50Hz. Osilasi yang terjadi di awal gelombang disebabkan penyesuaian *error feedback* terhadap gelombang masukan selama selang waktu 0,045 s. Hasil keluaran simulasi Simulink MATLAB selanjutnya dibandingkan dengan hasil *running* program yang ditunjukkan pada Gambar 15.



Gambar 15. Frekuensi Hasil Pembacaan SOGI-PLL (1V/div) (20ms/div)

Berdasarkan Gambar 15, terlihat bahwa nilai keluaran DAC yang terbaca berosilasi pada nilai  $V_{MEAN} = 4,759$  V. Persamaan (2.10) digunakan untuk mendapatkan nilai sebenarnya dari frekuensi dengan nilai *base* = 51, nilai *base* di sini merupakan nilai frekuensi terbesar yang mungkin terukur. Diperoleh hasil perhitungan nilai frekuensi aktual adalah sebagai berikut.

$$F_{Aktual} = \frac{V_{Terukur \, Oscilloscope}}{V_{Referensi}} \, x \, base \tag{7}$$

$$F_{Aktual} = \frac{4,759}{4,9} \, x \, 51 = 49,53 \, Hz$$

Nilai frekuensi  $\pm$  49,53 Hz dengan nilai pengukuran multimeter sebesar 50 Hz. Gelombang hasil pembacaan juga sudah sesuai dengan teorinya, yaitu nilai frekuensi = nilai omega bias dan akan naik nilainya jika terdapat sinyal kontrol PI.

## 3.5. Pembacaan Fase

Nilai pembacaan fase didapatkan ketika melakukan proses integral terhadap omega pada simulink MATLAB.



Gambar 16. Sudut Fase Hasil Simulink MATLAB

Berdasarkan Gambar 16 dapat dilihat bahwa nilai fase berbentuk gelombang gergaji dengan nilai 0 - 6. Nilai 0 - 6 ini merepresentasikan nilai  $0 - 2\pi$  yang merupakan besar *theta* ( $\theta$ ) sinusoidal tegangan jaringan. Hasil simulasi ini selanjutnya dibandingkan dengan hasil *running* program dengan tambahan gelombang ZMPT101B sebagai gelombang sinusoidal tegangan jaringan.



Gambar 17. Hasil Sudut Fase Estimasi dan V<sub>IN</sub> Tegangan Jaringan (1V/div) (5ms/div)

Berdasarkan Gambar 17 dapat kita lihat bahwa antara gelombang  $V_{IN}$  keluaran sensor ZMPT101B (merah) dengan sudut fase (kuning) sudah memiliki tren yang sama, sehingga bisa kita anggap bahwa kedua hasil informasi tersebut memiliki fase yang sama.



Gambar 18. Perbandingan Fase Estimasi dengan Fase V<sub>IN</sub> dalam Bentuk Sinusoidal (1V/div) (5ms/div)

Fase estimasi yang telah didapatkan selanjutnya diubah dalam bentuk gelombang sinus seperti yang ditunjukkan pada Gambar 18. Terlihat bahwa kedua Gelombang sinusoidal saling berhimpitan yang menunjukkan gelombang fase estimasi (kuning) sudah sefase dengan gelombang fase tegangan jaringan (merah).

## 4. Kesimpulan

Berdasarkan hasil dan analisis yang telah dilakukan maka dapat dibuat kesimpulan Second Order Generalized Integrator-Phase Locked Loop (SOGI-PLL) satu fasa telah berhasil direalisasikan menggunakan mikrokontroler dsPIC30f4011 yang dapat melakukan perhitungan data magnitude, frekuensi, dan gelombang fase representasi dari tegangan jaringan PLN. Sensor ZMPT101B dapat mengatur tegangan jaringan agar dapat menjadi sinyal ADC sesuai kebutuhan dsPIC30F4011. masukan Penerapan Quadrature Signal Generator menggunakan SOGI sudah berhasil menghasilkan gelombang  $V_{\alpha}$  dan  $V_{\beta}$ yang berbeda fase sebesar 90° terhadap gelombang  $V_{\alpha}$ . Pembacaan magnitude hasil keluaran mikrokontroler sudah masuk dalam keriteria sesuai dengan teori yang ada, yaitu V<sub>Estimasi</sub> = 320,04 V dengan V<sub>Pengukuran</sub> Multimeter = 321,73 V. Pembacaan frekuensi hasil keluaran alat dari pengujian program terbaca nilai  $F_{Estimasi} = \pm 49,3Hz$  dengan  $F_{Pengukuran}$  Multimeter = 50 Hz. Metode SOGI-PLL ini juga sudah dapat mengeluarkan gelombang fase sesuai dengan tegangan jaringan yang telah dilakukan pada simulasi MATLAB dan running program pada hardware.

## Referensi

- K. Rafal, M. Jasinski, and M. P. Kazmierkowski, "Grid synchronization and symmetrical components extraction with PLL algorithm for grid connected power electronic converters – a review," *Bull. Polish Acad. Tech. Sci.*, vol. 59, no. 4, pp. 485–497, 2011.
- [2]. I. Wasiak and Z. Hanzelka, "Integration of distributed energy sources with electrical power grid," *Bull. Polish Acad. Tech. Sci.*, vol. 57, no. 4, pp. 297–309, 2010.
- [3]. I. Setiawan, M. Facta, A. Priyadi, and M. H. Purnomo, "Estimator Parameter Tegangan Jaringan Tiga Fasa Berbasis D-SOGI PLL," *Teknol. Elektro*, vol. 16, no. 02, pp. 84–87, 2017.
- [4]. I. Setiawan and M. Facta, "Comparison of Three Popular PLL Schemes under Balanced and Unbalanced Grid Voltage Conditions," in 8th International Conference on Information Technology and Electrical Engineering (ICITEE), 2016.
- [5]. I. M. Afandi, "Modifikasi Algoritma Digital Phase Locked Loop Untuk Mengatasi Kondisi Unbalance Pada Pengukuran Sudut Fasa, Frekuensi, dan Amplitudo Tegangan Listrik Tiga Fasa," Universitas Indonesia, Jakarta, 2012.
- [6]. A. Nicastri and A. Nagliero, "Comparison and evaluation of the PLL techniques for the design of the gridconnected inverter systems," *IEEE Int. Symp. Ind. Electron.*, pp. 3865–3870, 2010.
- [7]. Y. Yang and F. Blaabjerg, "Synchronization in Single-Phase Grid-Connected Photovoltaic Systems under Grid Faults," 3rd IEEE Int. Symp. Power Electron. Distrib. Gener. Syst., 2012.
- [8]. K. Mozdzynski, K. Rafal, and M. Bobrowska-Rafal, "Application of The Second Order Generalized Integrator in Digital Control Systems," *Arch. Electr. Eng.*, vol. 63, no. 3, pp. 423–437, 2014.
- [9]. I. Setiawan, T. Andromeda, M. Facta, and S. Handoko, "Implementation and Performance Analysis of a Single Phase Synchronization Technique based on T / 4 Delay PLL," *Int. J. Renew. Energy Res.*, vol. 8, no. 1, pp. 585– 591, 2018.
- [10]. M. H. Abdurrahman, I. Setiawan, and S. Handoko, "Desain dan Implementasi Synchronous Reference Frame-Phase Locked Loop (SRF-PLL) Untuk Tegangan Satu Fase Menggunakan DSPIC30F4011," *TRANSIENT*, vol. 7, no. 1, pp. 145–151, 2018.