

Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

CONSTRAINT-INDUCED APHASIA THERAPY AND QUALITY OF LIFE IN POST-STROKE PATIENTS: A SYSTEMATIC REVIEW AND META-ANALYSIS

Haidar Ali Robbani Al Asrory^{1*}, Hana Aqilah Nur Imania¹

¹Airlangga University, Surabaya, Indonesia

ABSTRACT

Keywords:

*Aphasia,
Constraint-Induced Aphasia Therapy,
Quality of Life,
Stroke Rehabilitation.*

Received: 05 July 2025

Revised: 07 August 2025

Accepted: 11 August 2025

Available online: 01 January 2026

Corresponding Author:

E-mail: haidaralirobbani@gmail.com

Background: Aphasia is a common stroke complication that significantly impacts patients' quality of life (QoL). While Constraint-Induced Aphasia Therapy (CIAT) has been found to improve language capacity, its impact on QoL remains uncertain. **Objectives:** The purpose of the present study was to meta-analyze and systematically review the impact of CIAT on post-stroke aphasic patients' quality of life. **Methods:** A thorough search of five databases (PubMed, CINAHL, ScienceDirect, Scilit, and Cochrane Library) was conducted for 2009-2024 literature. Studies included experimental studies with assessments of CIAT's effect on QoL using valid instruments. Risk of bias was assessed using RoB 2 and JBI tools. Meta-analysis was conducted using Review Manager 5.4 and studies that utilized the SAQOL-39 scale. **Results:** Six trials were included based on inclusion criteria; three trials were subjected to the meta-analysis. CIAT had significant trends favorable for improved QoL, especially in areas of communication, although the combined effect was not significant statistically ($MD = 0.11$; 95% CI: -0.14 to 0.35 ; $p = 0.40$). There was low heterogeneity ($I^2 = 0\%$). **Conclusion:** CIAT may enhance QoL in aphasia patients, particularly in communicative functioning. While lacking high statistical significance, outcomes are in favor of CIAT's role in neurorehabilitation. Additional high-quality trials would be needed to ensure these results.

Copyright ©2025 by Authors. Published by Faculty of Medicine, Universitas Diponegoro Semarang Indonesia. This is an open access article under the CC-BY-NC-SA (<https://creativecommons.org/licenses/by-nc-sa/4.0/>).

INTRODUCTION

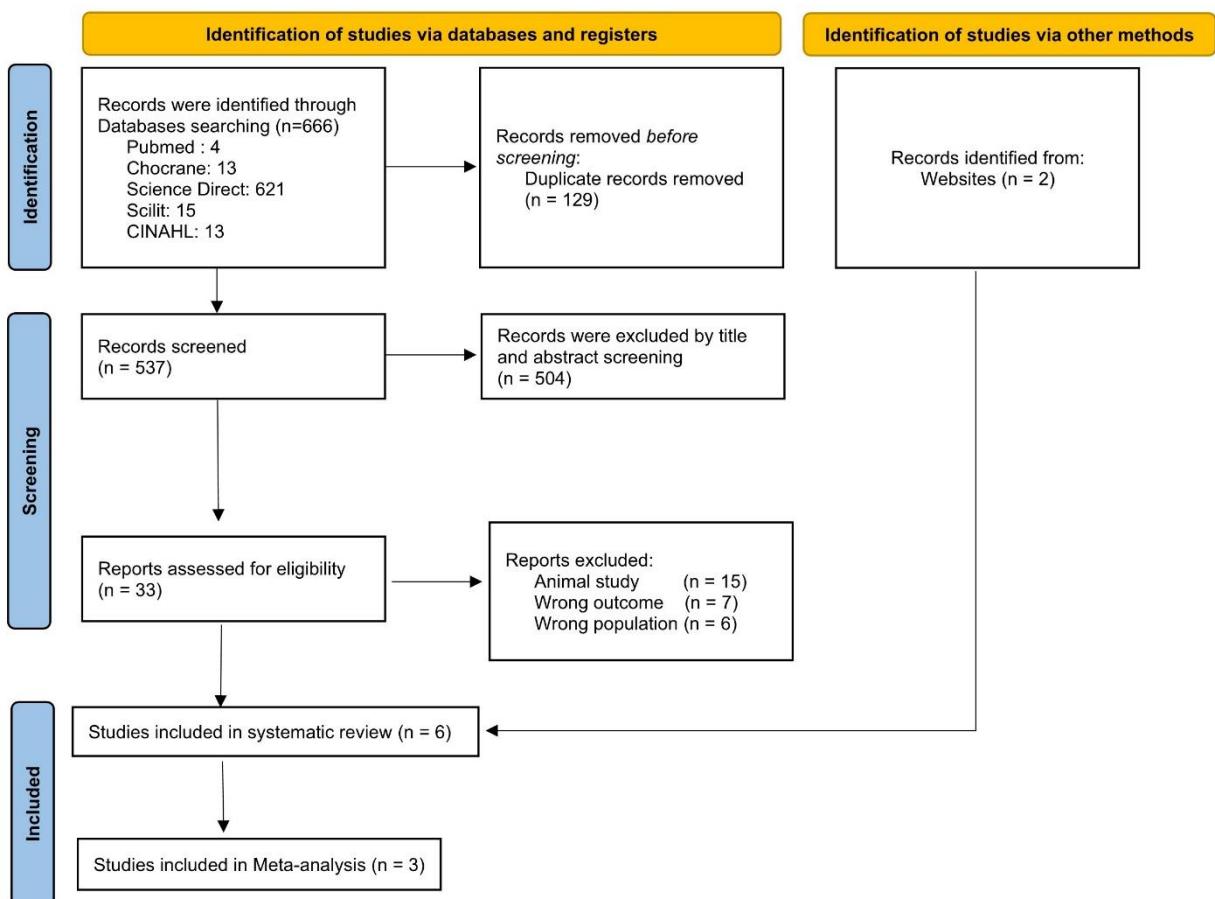
Aphasia is an acquired language disorder following stroke and one of the most common functional impairments associated with stroke¹. Approximately 40–60% of stroke survivors have aphasia in the chronic phase, and it is correlated with increased dependence in activities of daily living, reduced social participation, poorer rehabilitation outcomes, and reduced quality of life^{1–5}.

Conventional therapy for aphasia has traditionally focused on compensatory communication strategies to bridge patients' short-term communication deficits. These multimodal approaches are based on the assumption that utilization of alternative modes will gradually diminish as oral language improves. While these strategies enhance overall communicative effectiveness, there remains debate about whether

they actively promote language recovery or instead perpetuate a cycle of learned non-use⁶.

As a response to this problem, treatment based on communicative restraint has been developed, adopting constraint-induced motor treatment. Constraint-Induced Aphasia Therapy (CIAT) addresses this by promoting intense exercise of speaking with verbal prompting, while deliberately excluding access to compensatory techniques previously employed by the patient^{7,8}. Restriction of the use of an intact limb in the course of motor rehabilitation is relatively straightforward^{9,10}, but inhibition of nonverbal communication poses a difficulty.

CIAT adapts Taub's theoretical model of use-dependent cortical reorganization, originally developed for motor rehabilitation, to a language-based environment⁹. In this model, normal failed attempts at verbal communication can lead to



Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

frustration, decreasing the motivation of the patient to speak. This increases the dependence upon compensatory strategies and results in lessened activation of brain areas that are responsible for language.

CIAT challenges this cycle with a systematic and supportive setting of therapy that includes clinician-monitored practice, social reinforcement by peers, and exposure to social interaction. The hypothesis for this is that such a setting promotes increased verbal engagement, which is known to increase cortical currently available for the impact of CIAT on poststroke aphasia patients' quality of life and examine variables that may influence its outcome.

reorganization and support language recovery¹¹. Some studies have established that CIAT enhances language function in individuals with chronic aphasia^{9,10,12-17}. However, its effects on broader outcomes in patients, especially on quality of life (QoL), are still rarely reported. Since QoL is not only reflected in linguistic abilities but also in social interaction and independence, research on aphasia should not only focus on language dysfunction¹⁸. This study was aimed to systematically review evidence

Figure 1. PRISMA Diagram

Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

METHODS

Search strategy

Five computerized databases, including PubMed, Cinahl, ScienceDirect, Scilit, and the Cochrane Library, were searched for studies published from 2009 up to 2024. The search used the following terms: ("constraint-induced aphasia therapy" OR CIAT OR "constraint induced language therapy" OR CILT) AND ("quality of life" OR QoL OR "life quality" OR "health-related quality of life" OR HRQoL) AND (aphasia OR "language impairment" OR "speech disorder" OR "post-stroke aphasia"). This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement¹⁹. The articles obtained were screened and identified using Rayyan, a web-based system developed to facilitate the systematic review process²⁰. Additionally, the reference lists of included studies were hand-searched for any additional relevant articles that met the inclusion criteria²¹.

Eligibility Criteria

Studies included in this review were selected according to the following criteria: 1) employed an experimental or quasi-experimental design; 2) compared the effects of CIAT as the main treatment; 3) Adult participants (≥ 18 years) with poststroke aphasia; 4) assessed reported QoL as an outcome, using reliable measures such as the Stroke and Aphasia Quality of Life Scale-39 (SAQOL-39), EuroQol (EQ-5D), or other appropriate QOL scales; 5) reported quantitative pre- and/or post-intervention QOL results.

Exclusion criteria included: 1) studies combining CIAT with other therapies without isolating its impact, like pharmacological treatments or neuromodulation; 2) qualitative studies (narrative review or case reports); 3) non-reporting of any quantitative QoL outcomes; 4) pediatric groups, animals, or in vitro; 5) conference abstracts and protocols, with no full-text data.

Data Extraction and Quality Assessment

From each study included, the following data were extracted: first author's surname, year of publication, country of origin, study design, sample size, participant characteristics (age, sex, time post-stroke), CIAT protocol, and type of intervention

(length, intensity, group size), control or comparison group type, and outcome measures for quality of life (instrument used, pre- and post-treatment scores, and statistical results).

For measuring methodological quality, two tools were employed depending on the study design. In the case of randomized controlled trials, the Cochrane Risk of Bias 2 (RoB 2)²² tool was employed to rate five domains: randomization process, departures from intended interventions, missing outcome data, measurement of outcomes, and selection of the reported results. Risk of bias was rated as "low risk," "some concerns," or "high risk."

For non-randomized trials, the Joanna Briggs Institute (JBI) Critical Appraisal Checklist²³ was used, which grades studies based on criteria such as participant selection, clarity of intervention, outcome measurement, and completeness of follow-up. Studies that met at least 7 of the checklist criteria were considered high quality

Each quality rating was carried out independently by two reviewers, with agreement regarding any disagreement by discussion between reviewers or by reference to a third reviewer.

Statistical Analysis

Meta-analyses were performed on Review Manager (RevMan) version 5.4 (The Cochrane Collaboration, Oxford, UK)²⁴, following the methodological recommendations of the Cochrane Handbook for Systematic Reviews of Interventions²⁵. Quantitative analysis was limited to studies for which the Stroke and Aphasia Quality of Life Scale-39 (SAQOL-39) was the outcome measure.

Since all studies used the same instrument (SAQOL-39) to measure quality of life²⁶, and the scale design was the same, effect size was estimated using the mean difference (MD) with 95% confidence intervals (CIs). Where both pre- and post-treatment scores were published in studies, net change was calculated directly. Where studies offered more than one follow-up time point, the final measurement was used to capture the long-term impact of the intervention.

For outcomes provided in graphical only, numerical values were extracted using WebPlotDigitizer software. Meta-analyses were conducted using the inverse-variance method with random-effects model, so that intended clinical and

Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

methodological heterogeneity between studies could be adjusted for.

Statistical heterogeneity was assessed by the Chi-squared (χ^2) test, Tau², and I² statistic, and I² values of more than 50% were used to suggest considerable heterogeneity.

RESULTS

Search Results

We identified 666 records through database searching and 2 studies from other sources. After the exclusion of 129 duplicate records, 537 articles were titled and abstract screened. Out of them, 504 records were not relevant to the research question and were excluded, as shown in Figure 1. Full-text screening of the remaining 33 articles was conducted to assess their eligibility. Ultimately, 6 studies were included in the systematic review, and 3 were eligible for meta-analysis.

Characteristics of the Studies

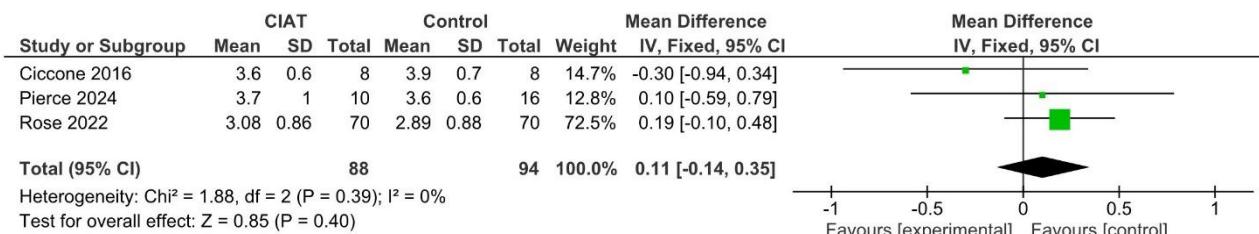
The six studies covered in this review are outlined in Table 1, showing their main characteristics. Geographically, the majority of the studies were from Australia (n = 4), with the two others being from the United States. Three were randomized controlled trials (RCTs) in terms of study design, namely²⁷⁻²⁹. The remaining research included a pilot study³⁰, a single-subject design study³¹, and a quasi-experimental comparative study³².

Sample sizes ranged from one participant in the pilot study to 216 participants in a large RCT. All studies included adults with chronic or post-acute aphasia secondary to stroke. Interventions were CIAT or CIAT-Plus based, with variation in intensity, session length, and mode of delivery. Most interventions were delivered over a period of 2 to 5 weeks, with a total dose of therapy ranging from 20 to 30 hours.

The QoL was assessed using a range of standardized instruments, including the SAQOL-39, EQ-5D/QALY, ASHA-QCL, and Quality of Life Scale (QOLS). The trials reported variable findings for QoL change. Three studies^{29,30,32}, reported significant changes in QoL, especially in communication domains. One study²⁷ reported improvement in both groups but not significantly different. One study²⁸ reported no significant change in QoL, but scores remained stable. On the other

hand, one study³² observed language improvement subsequent to CIAT but not in concomitant QoL score improvements. Conflicting results are due in part to the heterogeneity in study design, intervention protocols, and outcome measurements, pointing to the need for more high-quality trials to establish more conclusive evidence of QoL benefit

JURNAL KEDOKTERAN DIPONEGORO
(DIPONEGORO MEDICAL JOURNAL)


Online : <http://ejournal3.undip.ac.id/index.php/medico>
E-ISSN : 2540-8844
DOI : [10.14710/dmj.v15i1.52714](https://doi.org/10.14710/dmj.v15i1.52714)
JKD (DMJ), Volume 15, Number 1, January 2026 : 42-50

Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

Table 1. Characteristics of Included Studies

Author (Year)	Country	Study Design	Sample Size	Population Characteristics	Intervention (CIAT)	Control / Comparison	Duration of Intervention	QoL Measure	QoL Outcome Summary
Attard (2013)	Australia	Pilot Study	1 (case comparison)	Severe chronic Broca's aphasia	CIAT-Plus: intensive therapy	M-MAT	Not clearly specified	SAQOL-39	Showed improvement in communication-related quality of life.
Ciccone (2016)	Australia	Randomized Controlled Trial (RCT)	20 (12 CIAT, 8 Individual)	Acute stroke with aphasia; recruited within 11 days post-onset	CIAT (20 sessions × 45–60 min over 4–5 weeks)	Individual impairment-based aphasia therapy	4–5 weeks (up to 20 sessions)	SAQOL-39	Both groups improved; CIAT slightly better, but not statistically significant.
Pierce (2024)	Australia & NZ	Phase II RCT	70 (sub-study)	Chronic aphasia, >6 mo post-stroke, WAB-R AQ < 93.8	CIAT-Plus: 2 hrs/day, 3 days/week, 5 weeks (30 hrs), group format	M-MAT	5 weeks (30 hrs)	SAQOL-39	No major changes, but QoL scores remained stable over time.
Rose (2022)	Australia	RCT (COMPARE trial)	216 total (70 CIAT-Plus)	Chronic aphasia, >6 mo, community-dwelling	CIAT-Plus: 3 hrs/day, 5 days/week, 2 weeks	M-MAT, usual care	2 weeks	SAQOL-39	Clear improvement in communication-related quality of life.
Kim (2024)	Australia	RCT + Economic Eval	201 (70 CIAT-Plus)	Chronic aphasia, mean age 63 yrs	CIAT-Plus: 3 hrs/day, 5 days/week, 2 weeks (30 hrs), group format	M-MAT and usual care	2 weeks (30 hrs)	EQ-5D, QALY	CIAT-Plus was cost-effective, but did not significantly improve QoL scores.
Richardson (2009)	USA	Single-subject design	6 total (3 dyads)	Mild to severe aphasia, chronic (>3 mo), grouped by severity	CIAT: 2 hrs/day, 10 consecutive weekdays (20 hrs), dyads	Baseline and withdrawal phases	2 weeks	ASHA-QCL	All participants showed moderate to large improvements in QoL scores.
Sharp (2013)	USA	Quasi-experimental comparative study	20 (10 CIAT, 10 Traditional)	Adults with expressive aphasia post-stroke	CIAT: 10 sessions over 2 weeks	Traditional aphasia therapy: 6 sessions over 2 weeks	2 weeks	Quality of Life Scale (QOLS)	CIAT showed significant language gains but not QoL changes.

Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

SD = standard deviation; IV = inverse-variance; CI = confidence interval.

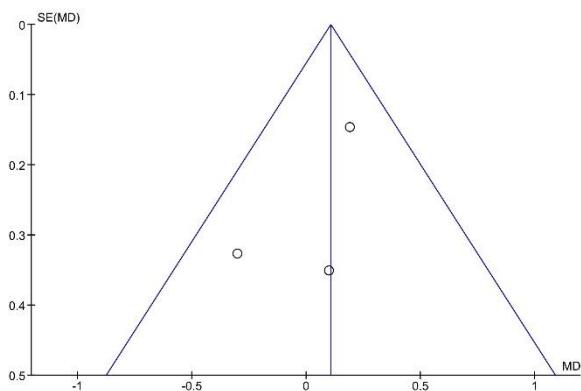
Figure 2. Forest plot of the SAQoL-39 Score (CIAT vs Control)

Methodological Quality

Three RCT trials were appraised using the RoB 2 tool. The risk of bias was low in all domains in one trial²⁸, while two trials were considered to have some concerns^{27,29}, primarily concerning the failure of blinding participants or therapists and possible deviations from planned interventions.

Two randomized experimental studies were critically appraised using the JBI Critical Appraisal Checklist. The first, a quasi-experimental design comparison of CIAT with traditional therapy, had high-quality methodology with 8/9 score³². The second, an A-B-A single-case experimental design with an A-B-A single-case experimental design, had 7/8 score³⁰ with good reporting and internal validity but low generalizability due to the very small sample size ($n=2$).

Finally, a single-case multiple baseline study was also evaluated through the JBI checklist. It was of moderate quality³¹, with good procedural and result descriptions but potential problems with variation of baseline and strength of replication.


Meta-Analysis of Effects of Constraint-Induced Aphasia Therapy on SAQoL-39 Scale

In designing and performing the meta-analysis, methodological and clinical heterogeneity across the included studies was minimal. All three studies were randomized controlled trials comparing CIAT with either individual therapy or multimodality aphasia therapy (M-MAT), focusing on quality of life outcomes measured using the SAQoL-39 scale. Clinically, the studies varied slightly in treatment intensity and population characteristics, ranging from early to chronic post-stroke phases and differing in sample sizes.

To accommodate these variations, a fixed-effects model was employed to analyze three studies reporting post-intervention SAQoL-39 scores. The meta-analysis demonstrated no significant overall difference in quality of life outcomes between CIAT and control interventions ($MD = 0.11$, 95% CI = -0.14 to 0.35 , $Z = 0.85$, $p = 0.40$), indicating comparable efficacy across treatment types. Individual study effect sizes varied. Study by Rose et al²⁹ showed the largest weight due to its sample size, with a modest positive effect favoring CIAT ($MD = 0.19$, 95% CI = -0.10 to 0.48). Pierce et al. (2024)²⁸ demonstrated a near-neutral effect ($MD = 0.10$, 95% CI = -0.59 to 0.79), while Ciccone et al. (2016)²⁷ showed a small, non-significant effect favoring control ($MD = -0.30$, 95% CI = -0.94 to 0.34). The meta-analysis showed no heterogeneity between studies ($I^2 = 0\%$, $\chi^2 = 1.88$, $p = 0.39$), indicating consistency in the direction and magnitude of effects despite differences in study design and populations. This strengthens the conclusion that CIAT has a quality of life outcome profile comparable to other standard aphasia therapies.

The vertical dashed line indicates the pooled effect size derived from the meta-analysis, while the diagonal lines represent the expected 95% confidence interval boundaries around this estimate. Each circle represents an individual study.

Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

Figure 3. Funnel plot of the effect size according to standard errors

DISCUSSION

Implications from our review suggest that CIAT can improve QoL in individuals with post-stroke aphasia. Additionally, results from our meta-analysis attest to the beneficial effect of CIAT on QoL outcomes, particularly in terms of communication-related outcomes, though the overall mean difference was not significant. For all that lacking significant group-level impact, the direction of the effect was consistent across the majority of the studies reviewed, and the impact was in favor of CIAT.

Subsequent aphasia rehabilitation literature has emphasized that language gain in itself may not fully capture patient-relevant outcomes unless functional communication and psychosocial engagement are also taken into account³³⁻³⁵. The majority of studies employed the SAQOL-39, specifically designed to quantify QoL in people with aphasia, and intervention protocols, while varying in length and intensity, tended to be associated with CIAT and enhanced patient-reported QoL scores.

Significantly, trials that incorporated multimodal or personalized components to CIAT, such as COMPARE trial^{28,29}, showed enhanced communication factors in the SAQOL-39. It aligns with the statement that QoL in aphasia is not only a matter of proper usage of language but also functional use and confidence during daily circumstances³⁶. In contrast, Sharp³² and Ciccone et al²⁷ found no differences in QoL scores post-intervention, yet there was language outcome improvement, which suggests that therapeutic outcomes do not always

automatically translate to perceived life quality unless contextual and social participation facets are being targeted.

Delivery variability of intervention, e.g., session frequency, group or individual session, and therapists' training, was also noted through our analysis. This heterogeneity would have created variation in outcome and highlights the requirement for standard but flexible treatment systems. Finally, the inclusion of non-randomized and small-N studies³⁰⁻³² highlights both potential and methodological restrictions within current CIAT research. Even while these studies reported significant QoL and naming improvement, restricted generalizability and high risk of performance or measurement bias require cautionary interpretation.

In measuring outcomes, there was heterogeneity in the time of assessment between trials, where some measured QoL at immediate post-treatment and others with more prolonged follow-up. This introduces uncertainty in interpreting whether CIAT's outcomes are temporary or long lasting in nature. Given that QoL is a dynamic and dependent factor for environmental, emotional, and social variables, future research should incorporate longitudinal designs to measure the temporal effect of CIAT.

While overall findings are encouraging, our review did identify areas of high-priority gaps. Firstly, few trials included non-language control groups (e.g., attention or social interaction without therapy structure), and this meant it was difficult to distinguish the linguistic benefits of CIAT from non-specific psychosocial engagement. Secondly, even where individual trials had robust findings, the lack of significant effects at the aggregated level suggests a need that is unmet for larger, multi-site RCTs to ascertain efficacy in a variety of populations.

From a clinical perspective, the evidence is in favor of using CIAT as an effective language therapy with functional relevance to patients' lives. Its intensity, group-oriented, and socially embedded methodology make it singularly well-placed to address both linguistic damage and QoL concerns in aphasia rehabilitation. CIAT may therefore be part of wide-ranging recovery models prioritizing not only language recovery but also returning patients to communicative life.

Overall, this review supports the application of CIAT as a systematic and reachable intervention with

Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

the capability to enhance communication-related quality of life in individuals with aphasia. Future research needs to concentrate on standardizing intervention protocols, examining transfer mechanisms into daily life, and examining long term impacts of CIAT on communication and psychosocial well-being. Ideally, the integration of CIAT into patient-centered neurorehabilitation could boost both functional recovery and personal perception of quality of life following stroke.

ETHICAL APPROVAL

This study is a systematic review and meta-analysis that did not involve direct human subject involvement or use of individual patient data. Therefore, ethical approval was not needed.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

FUNDING

No specific funding was provided for this article

AUTHOR CONTRIBUTIONS

All of the authors equally contributed to the study

ACKNOWLEDGMENTS

This work was supported by Airlangga University Surabaya

REFERENCES

1. Balardin JB, Miotto EC. A review of Constraint-Induced Therapy applied to aphasia rehabilitation in stroke patients. *Dement Neuropsychol.* 2009;3(4):275–82.
2. Fang Y, Chen X, Li H, Lin J, Huang R, Zeng I. A study on additional early physiotherapy after stroke and factors affecting functional recovery. *Clin Rehabil.* 2003;17(6):608–17.
3. Lee H, Lee Y, Choi H, Pyun SB. Community integration and quality of life in aphasia after stroke. *Yonsei Med J.* 2015;56(6):1694–700.
4. Boehme AK, Martin-Schild S, Marshall RS, Lazar RM. Effect of aphasia on acute stroke outcomes. *Neurology.* 2016;87(22):2348–54.
5. Koleck M, Gana K, Lucot C, Darrigrand B, Mazaux JM, Glize B. Quality of life in aphasic patients 1 year after a first stroke. *Qual Life Res.* 2017;26(1):45–54.
6. André JM, Didier JP, Paysant J. Functional motor amnesia in stroke (1904) and learned non-use phenomenon (1966). *J Rehabil Med.* 2004;36(3):138–40.
7. Pulvermüller F, Neininger B, Elbert T, Mohr B, Rockstroh B, Koebbel P, et al. Constraint-induced therapy of chronic aphasia after stroke. *Stroke.* 2001;32(7):1621–6.
8. Szaflarski JP, Ball AL, Grether S, Al-Fwaress F, Griffith NM, Neils-Strunjas J, et al. Constraint-induced aphasia therapy stimulates language recovery in patients with chronic aphasia after ischemic stroke. *Med Sci Monit.* 2008;14(5):CR243–50.
9. Page SJ, Levine P, Leonard A, Szaflarski JP, Kissela BM. Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial. *Phys Ther.* 2008;88(3):333–40.
10. Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review. *J Rehabil Res Dev.* 1999;36(3):237–51.
11. Richard C, Katz B, Hallowell C, Code E, Armstrong P, Roberts C, et al. A multinational comparison of aphasia management practices. *Int J Lang Commun Disord.* 2000;35(2):303–14.
12. Zhang J, Yu J, Bao Y, Xie Q, Xu Y, Zhang J, et al. Constraint-induced aphasia therapy in post-stroke aphasia rehabilitation: a systematic review and meta-analysis of randomized controlled trials. *PLoS One.* 2017;12(8):e0183349.
13. Woldag H, Voigt N, Bley M, Hummelsheim H. Constraint-induced aphasia therapy in the acute stage: what is the key factor for efficacy? A randomized controlled study. *Neurorehabil Neural Repair.* 2017;31(1):72–80.
14. Sickert A, Anders LC, Münte TF, Sailer M. Constraint-induced aphasia therapy following sub-acute stroke: a single-blind, randomised clinical trial of a modified therapy schedule. *J Neurol Neurosurg Psychiatry.* 2014;85(1):51–5.
15. Wilssens I, Vandennehorre D, van Dun K, Verhoeven J, Visch-Brink E, Marien P. Constraint-induced aphasia therapy versus

Haidar Ali Robbani Al Asrory, Hana Aqilah Nur Imania

intensive semantic treatment in fluent aphasia. *Am J Speech Lang Pathol.* 2015;24(2):281–94.

16. Kurland J, Stanek EJ 3rd, Stokes P, Li M, Andrianopoulos M. Intensive language action therapy in chronic aphasia: a randomized clinical trial examining guidance by constraint. *Am J Speech Lang Pathol.* 2016;25(4 Suppl):S798–812.

17. Stahl B, Mohr B, Dreyer FR, Lucchese G, Pulvermüller F. Using language for social interaction: communication mechanisms promote recovery from chronic non-fluent aphasia. *Cortex.* 2016;85:90–9.

18. Worrall L, Holland A. Quality of life in aphasia. *Aphasiology.* 2003;17(4):329–32.

19. Moher D, Altman DG, Tetzlaff J. PRISMA (Preferred Reporting items for systematic reviews and Meta-Analyses). Guidelines for Reporting Health Research: A User's Manual. 1999;1999:250.

20. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. *Syst Rev.* 2016;5:210.

21. Horsley T, Dingwall O, Sampson M. Checking reference lists to find additional studies for systematic reviews. *Cochrane Database Syst Rev.* 2011;(8):CD008021.

22. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ.* 2019;366:l4898.

23. Aromataris E, Munn Z. JBI Manual for Evidence Synthesis. Adelaide: Joanna Briggs Institute; 2020.

24. Cochrane Collaboration. Review Manager (RevMan) [Computer software]. Version 5.4. The Cochrane Collaboration; 2020.

25. Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y, editors. Cochrane handbook for systematic reviews of diagnostic test accuracy. Chichester: John Wiley & Sons; 2023.

26. Hilari K, Byng S, Lamping DL, Smith SC. Stroke and aphasia quality of life scale-39 (SAQOL-39): evaluation of acceptability, reliability, and validity. *Stroke.* 2003;34(8):1944–50.

27. Ciccone N, West D, Cream A, Cartwright J, Rai T, Granger A, et al. Constraint-induced aphasia therapy (CIAT): a randomised controlled trial in very early stroke rehabilitation. *Aphasiology.* 2016;30(5):566–84.

28. Pierce JE, O'Halloran R, Togher L, Nickels L, Copland D, Godecke E, et al. Acceptability, feasibility and preliminary efficacy of low-moderate intensity constraint induced aphasia therapy and multi-modality aphasia therapy in chronic aphasia after stroke. *Top Stroke Rehabil.* 2024;31(1):44–56.

29. Rose ML, Nickels L, Copland D, Togher L, Godecke E, Meinzer M, et al. Results of the COMPARE trial of constraint-induced or multimodality aphasia therapy compared with usual care in chronic post-stroke aphasia. *J Neurol Neurosurg Psychiatry.* 2022;93(6):573–81.

30. Attard MC, Rose ML, Lanyon L. The comparative effects of multi-modality aphasia therapy and constraint-induced aphasia therapy-plus for severe chronic Broca's aphasia: an in-depth pilot study. *Aphasiology.* 2013;27(1):80–111.

31. Richardson JD. The effect of constraint-induced aphasia therapy on naming and discourse in individuals with aphasia [dissertation]. Athens (GA): University of Georgia; 2009.

32. Sharp B. Stress, depression, quality of life, and language recovery in constraint induced aphasia therapy (CIAT) [thesis]. Loma Linda (CA): Loma Linda University; 2013.

33. Doedens WJ, Meteyard L. What is functional communication? A theoretical framework for real-world communication applied to aphasia rehabilitation. *Neuropsychol Rev.* 2022;32(4):937–73.

34. Simmons-Mackie N, Kagan A. Application of the ICF in aphasia. *Semin Speech Lang.* 2007;28(4):244–53.

35. Kagan A, Simmons-Mackie N, Rowland A, Huijbregts M, Shumway E, McEwen S, et al. Counting what counts: a framework for capturing real-life outcomes of aphasia intervention. *Aphasiology.* 2008;22(3):258–80.

36. Filipska-Blejder K, Zielińska J, Zieliński M, Wiśniewski A, Ślusarz R. How does aphasia affect quality of life? Preliminary reports. *J Clin Med.* 2023;12(24):7687.