Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online : 2540-8844

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

PENGARUH PAPARAN ASAPMESIN DIESEL TERHADAP GAMBARAN HISTOLOGI PARU PADA PENDERITA ALERGI (STUDY EXPERIMENTAL PADA MENCIT BALB/C)

Chrisantus Ronald Bria Seran¹, Suprihati², Yanuar Iman Santosa²

¹Mahasiswa Program Pendidikan S-1 Kedokteran Umum, Fakultas Kedokteran, Universitas Diponegoro

²Staf Pengajar Ilmu THT-KL, Fakultas Kedokteran, Universitas Diponegoro

JL. Prof. H. Soedarto, SH., Tembalang-Semarang 50275, Telp. 02476928010

ABSTRAK

Latar Belakang: Alergi merupakan hasil dari interaksi antara faktor predisposisi genetik atopi dengan alergen lingkungan, infeksi dan polutan. Rinitis alergi adalah suatu gangguan pernapasan pada hidung yang disebabkan oleh reaksi peradangan mukosa yang diperantarai oleh imunoglobulin E (IgE) setelah terjadi paparan alergen. Partikel hasil pembakaran mesin diesel menyebabkan peningkatan IgE dengan berbagai mekanisme dan inflamasi lokal pada saluran pernafasan, sehingga terjadi peningkatan kontak antara jaringan dengan alergen sehingga timbul respon imun. Maka dapat diketahui pengaruh paparan asap mesin diesel terhadap struktur histopatologi paru mencit yang terpapar asap mesin diesel dengan jumlah eosinofil pada paru mencit tersebut.

Tujuan : Mengetahui paparan asap mesin diesel yang mempengaruhi kerusakan epitel jaringan paru pada penyakit alergi.

Metode: Sampel sebanyak 15 mencit dipilih secara *simple random sampling*. mencit dibagi menjadi tiga kelompok. Kelompok Kontrol Negatif(K) diberikan pakan standar dan air minum selama masa penelitian Kelompok Kontrol Positif (K1) diinjeksi OVA secara intraperitoneal. Selanjutnya diberikan OVA 1% intranasal. Kelompok Perlakuan 1 (P1) diberikan paparan asap mesin diesel setelah diinduksi OVA.

Hasil: Rata-rata jumlah eosinophil kelompok kontrol (-) 0,52, kontrol (+) 2,12 dan perlakuan 2,36. Perbandingan antara kelompok kontrol (-) dengan kelompok kontrol (+) dan perbandingan antara kelompok kontrol (-) dengan kelompok perlakuan diperoleh nilai p sebesar 0.008. perbandingan antara kelompok kontrol (+) dengan kelompok perlakuan diperoleh nilai p sebesar 0.246

Kesimpulan : Jumlah eosinofil di jaringan peribronkhial paru pada kelompok control positif yang diinduksi ovalbumin lebih tinggi dibandingkan dengan kelompok control negatif yang tidak diinduksi ovalbumin

Kata kunci: Rhinitis Alergi, Asap Mesin Diesel, Eosinofil, Ovalbumin

ABSTRACT

THE IMPACT OF DIESEL EXHAUST EXPOSURE ON PULMONARY HISTOLOGY IN ALLERGY SUFFERERS (STUDY EXPERIMENTAL ON BALB/C MICE)

Background: Allergies are the result of the interaction between atopy genetic predisposing factors with environmental allergens, infections and pollutants. Allergic rhinitis is a respiratory disorder of the nose caused by a mucosal inflammatory reaction mediated by immunoglobulin E (IgE) after allergen exposure occurs. The particle of the invention of the diesel engine causes the increase of IgE with various local mechanisms and inflammation in the respiratory tract, resulting in increased contact between tissues with allergens resulting in an immune response. So it can be seen the effect of exposure to diesel exhaust particles to

JKD, Vol. 7, No. 2, Mei 2018 : 433-441

Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online: 2540-8844

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

histopathology structure of lung mice exposed to diesel exhaust particles by comparing the number of eosinophil of the mice.

Aim: To assess exposure of diesel exhaust particles effects on epithelial damage lung tissue in allergic disease.

Methods: Sample of 15 mice were selected by simple random sampling. mice were divided into three groups with 5 mice per group. Control group (K) given the standard feed and water during the study. Control group 1 (K1) injected OVA intraperitoneally then given the intranasal OVA 1%. Treatment group 1 (P1) were given diesel exhaust particles exposure after the induction of OVA.

Results : Mean number of control group eosinophil (-) 0,52, control (+) 2,12 and treatment 2,36. The comparison between control group (-) and control group (+) and comparison between control group (-) and treatment group was obtained p value of 0.008. The comparison between the control of the group (+) and the treatment group obtained p value of 0.246.

Conclusions: The number of eosinophils in the lung tissue in the positive control group ovalbumin-induced higher compared with negative control group that was not induced ovalbumin

Key words: Allergic Rhinitis, Diesel Exhaust Particles, Eosinophils, Ovalbumin

PENDAHULUAN

Alergi merupakan hasil dari interaksi antara faktor predisposisi genetik atopi dengan alergen lingkungan, infeksi dan polutan. Faktor lingkungan memegang pada sensitisasi peranan besar awal seseorang yang mempunyai bakat atopi akan menentukan perkembangan dan gejala klinis serta derajat beratnya penyakit. Kondisi alergi seperti rinitis dan dermatitis alergi, asma, atopi umumnya mempunyai jalur imunopatologi yang sama.¹

Melihat faktor lingkungan sebagai salah satu faktor predisposisi dari penyakit alergi maka kita tidak dapat mengesampingkan polutan di lingkungan yang berpotensi sebagai alergen seperti diesel, asap mesin asap kendaraan bermotor, asap rokok, kebersihan

lingkungan tempat tinggal, dll. Bahan iritan saluran nafas yang terkandung dalam udara lingkungan kita seperti sulfur dioksida, nitrogen oksida, dan partikel hasil pembakaran mesin diesel menyebabkan peningkatan IgE dengan berbagai mekanisme dan inflamasi lokal pada saluran pernafasan, sehingga terjadi peningkatan kontak antara jaringan dengan alergen sehingga timbul respon imun. 2

METODE

Penelitian ini berbentuk true experimental with post test only control group design yang menggunakan mencit Balb/C sebagai subjek penelitian. Populasi penelitian ini adalah mencit Balb/C betina yang diperoleh dari Labroratorium Biologi Fakultas MIPA Universitas Negeri Semarang.

JKD, Vol. 7, No. 2, Mei 2018 : 433-441

Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online: 2540-8844

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

Cara pemilihan sampel simple random sampling dimana dalam memilih sampel dilakukan secara acak dengan tujuan untuk menghindari bias, sehingga semua objek mempunyai kesempatan yang sama untuk menjadi sampel penelitian. Kemudian mencit yang sudah terpilih akan dibagi menjadi 3 kelompok. Besar sampel hewan coba digunakan, mengikuti dasar kriteria WHO untuk perlakuan hewan adalah 5 ekor perlakuan.³ perkelompok Dari tiga kelompok perlakuan, masing - masing perlakuan terdiri dari 5 ekor mencit, dan 1 sebagai cadangan. Jadi total mencit yang diguanakan adalah 18 ekor. menjadi tiga kelompok. Kelompok Kontrol Negatif(K) diberikan pakan standar dan air minum selama masa penelitian Kelompok Kontrol Positif (K1)diinjeksi OVA secara intraperitoneal. Selanjutnya diberikan OVA 1% intranasal. Kelompok Perlakuan 1 (P1) diberikan paparan asap mesin diesel setelah diinduksi OVA.

HASIL

Tabel 1 Data rata-rata jumlah Eosinofil pada

ketiga kelompok

Jumlah Eosinofil		
Mean	Std.Deviasi	
0.52	0.10	
2.12	0.75	
2.36	0.38	
	Mean 0.52 2.12	

Tabel menunjukkan adanya peningkatan jumlah Eosinofil pada kelompok kontrol (+) dan kelompok perlakuan.

Tabel 2 Hasil uji normalitas *Shapiro Wilk dan*Homogenitas *Levene test*

Test	Kelompok	p	Keterangan
Shapiro	Kontrol (-)	0.006	Data berdistribusi
Wilk test			tidak normal
	Kontrol (+)	0.062	Data berdistribusi
			normal
	Perlakuan	0.928	Data berdistribusi
			normal
Levene	Based on	0.084	Data homogen
test	mean		

Dengan demikian syarat uji parametric menggunakan Oneway Anova tidak terpenuhi karena pada kelompok kontrol (-) data berdistribusi tidak normal, sehingga sebagai alternatif digunakan uji non parameterik Kruskal Wallis test. Hasil uji Krukal Wallis sebagai berikut:

Tabel 3 Hasil uji Kruskal Wallis

Test	Kelompok	P	Ket
Kruskal	Kontrol (-)		D . J . J .
Wallis	Kontrol (+)	0.006	Berbeda bermakna
	Perlakuan		ocimakna

Hasil uji Kruskal Wallis diperoleh nilai p sebesar 0.006 (p<0.05) yang menunjukkan bahwa terdapat perbedaan rata-rata jumlah eosinofil yang signifikan minimal antara 2 kolompok, Selanjutnya

JKD, Vol. 7, No. 2, Mei 2018: 433-441

Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online : 2540-8844

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

untuk mengetahui perbandingan antara masing-masing kelompok dilakukan uji Mann Whitney dengan hasil sebagai berikut:

Tabel 4 Hasil Uji Mann-Whitney

Mann Wh	itney test	P	Keterangan
Kontrol (-)	Kontrol	0.000	Berbeda
	(+)	0.008	bermakna
Kontrol (-)	Perlakuan	0.008	Berbeda
			bermakna
Kontrol (+)	Perlakuan	0.246	Berbeda
			tidak
			bermakna

Dari hasil *uji Mann-Whitney* diatas perbandingan antara kelompok control (-) dengan kelompok kontrol (+) diperoleh nilai p sebesar 0.008 (p<0.05) yang berarti bahwa ada perbedaan rata-rata jumlah eosinofil yang signifikan antar kontrol (-) dengan kontrol (+), perbandingan antara kelompok kontrol (-) dengan kelompok perlakuan diperoleh nilai p sebesar 0.008 (p<0.05) yang berarti bahwa ada perbedaan rata-rata jumlah eosinofil yang signifikan antar kontrol (-) dengan kelompok perlakuan, perbandingan antara kelompok kontrol (+) dengan kelompok perlakuan diperoleh nilai p sebesar 0.246 (p>0.05) yang berarti bahwa tidak ada perbedaan rata-rata jumlah eosinofil yang signifikan kelompok kontrol (+) dengan kelompok perlakuan.

PEMBAHASAN

Jumlah Eosinofil pada Paru dengan Alergi Saluran Pernapasan

Alergi sebagai reaksi hipersensitivitas tipe I terjadi setelah paparan berulang alergen spesifik pada individu atopi. Ketidakseimbangan Th1-Th2 menjadi dominasi imunitas humoral (Th2) menyebabkan pelepasan berbagai sitokin dan mediator inflamasi yang memperantarai reaksi alergi yaitu IL-4, IL-5, IL-13 dan aktivasi sel limfosit B dalam antibody menghasilkan **IgE** (Immunoglobulin) E. Perlekatan IgE pada sel mast tersensitisasi dapat memicu degranulasi menghasilkan histamin pada reaksi fase cepat dan eosinofil pada reaksi alergi fase lambat.⁴

Pada penelitian ini, didapatkan nilai signifikasi dari uji antar variabel sebesar 0,006 yang berarti terdapat perbedaan signifikan. Hal ini sesuai dengan penelitian dari Takizawa H dkk menyatakan bahwa paparan asap diesel berperan dalam pengaktifan jalur penting ekspresi sitokin sitokin inflamasi⁵

Korelasi antara paparan asap mesin diesel dan jumlah hitung eosinofil antara kontrol (+) dengan kelompok yang diberi perlakuan menunjukkan hasil terdapat perbedaan tidak bermakna (p=0,246). Hal ini sesuai dengan Surjanto dan Setijadi

JKD, Vol. 7, No. 2, Mei 2018: 433-441

Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online : 2540-8844

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

bahwa asap diesel pada sel epitel hidung dan bronkhus normal menghasilkan sintesis dan pengeluaran mediator proinflamasi, *eicosanoids*, sitokin, dan *adhesion molecule* yamg signifikan.⁶

Sensitisasi Ovalbumin terhadap jumlah Eosinofil pada Paru

Ovalbumin sebagai protein telur yang dapat menjadi allergen yang cukup efektif dalam mengembangkan model mencit alergi. OVA dapat diterapkan melalui metode sistemik dan local secara ataupun kronik akut yang dapat meningkatkan kadar IgE dan akumulasi eosinofil. Penelitian ini menggunakan metode sensitisasi OVA dengan dosis 10 ug dan 2 mg AL(OH)₃ dalam 0,2 Ml normal saline pada hari ke 0, 7, dan 14 melalui injeksi intraperitoneal, dilanjutkan inhalasi 1% OVA dalam 5 ml normal saline menggunakan nebulizer Omron tipe NE-C28 pada hari ke-19 sampai hari ke-22 selama 30 menit. Metode tersebut berhasil membutikan jumlah eosinofil pada gambaran histopatologi jaringan kelompok kontrol positif (K2) lebih tinggi secara signifikan dibandingkan kelompok kontrol negatif (K1), sehingga dapat disimpulkan OVA bahwa berhasil mencetuskan inflamasi pada saluran pernafasan model hewan coba mencit alergi.7,8

Pada penelitian ini OVA dapat menginduksi inflamasi dengan didapatkannya hasil uji korelasi yang bermakna (p=0,005) pada ketiga kelompok Hasil penelitian ini sejalan dengan hasil penelitian Eun-Ju Lee dkk pada tahun 2012, ditemukan bahwa injeksi OVA sistemik dengan frekuensi lima kali dalam seminggu didapatkan kadar antibody IgE, sitokin IL-4 dan IL-5 serum pada kelompok sensitisasi OVA lebih tinggi dibandingkan kelompok kontrol.

Penelitian ini membuktikan bahwa sesitisasi OVA secara injeksi intraperitoneal pada hari ke 0, dan 14 dilanjutkan inhalasi OVA selama 20 menit dengan frekuensi 3 kali seminggu selama 6 minggu memberikan respon inflamasi dengan infiltrasi sel radang dan eosinophil lebih tinggi secara bermakna pada kelompok OVA dibandingkan dengan kelompok kontrol.¹⁰

Pemberian Paparan Asap Mesin Diesel Terhadap Kerusakan Jaringan Paru

Pada penelitian ini tidak didapatkan kerusakan jaringan paru, sesuai dengan penelitian sebelumnya apabila waktu paparan singkat tidak menimbulkan perubahan yang signifikan, akan tetapi didapatkan perbedaan jumlah eosinofil pada ketiga kelompok. Jumlah eosinofil kelompok kontrol (-) sebesar 0.52 + 0.10,

Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online : 2540-8844

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

kelompok kontrol (+) sebesar 2.12 + 0.75 dan kelompok perlakuan sebesar 2.36 + 0.38, ini menunjukkan adanya perbedaan jumlah eosinofil pada kelompok kontrol (+) dan kelompok perlakuan namun tidak signifikan. Hal ini disebabkan karena kelompok control positif (+) disensitisasi dengan OVA secara akut pada model hewan coba alergi menggambarkan peningkatan antibodi IgE, sitokin TH2 dan akumulasi sel eosinofil secara dominan, sedangkan kondisi airway remodeling pada alergi saluran pernafasan hanya dapat ditemukan pada sensitisasi OVA dalam jangka waktu kronis.¹¹

Sensitisasi OVA yang pada akhirnya meningkatkan kadar eosinophil pada hewan coba mencit sesuai dengan oleh Haczku penelitian dkk yang menyatakan bahwa terdapat peningkatan signifikan dalam jumlah eosinophil pada kelompok yang mendapat sensitisasi ovalbumin dibandingkan dengan yang mendapatkan sensitisasi saline. Pada kelompok yang mendapatkan sensitisai ovalbumin terjadi peningkatan sistem imun dan mekanisme inflamasi. 12

Terdapat juga peningkatan jumlah eosinofil pada kelompok perlakuan yang diberi perlakuan asap mesin diesel. Hal ini disebabkan karena paparan asap mesin diesel menyebabkan peningkatan eosinofil yang adalah mediator innflamasi, sesuai dengan penelitian sebelumnya yang membuktikan bahwa asap mesin diesel dapat meningkatkan jumlah peningkatan neutrofil, limfosit, monosit, eosinofil, dan basofil.^{13,14}

Peningkatan Eosinofil di Jaringan Paru dan Kerusakan Jaringan Paru

Untuk mengevaluasi kemungkinan eosinofil dalam memediasi peranan kerusakan parenkim paru, yaitu dengan jalan adanya protease yang dapat merusak protein jaringan ikat pada paru dan kemampuannya dalam memediasi sitotoksisitas pada sel parenkim paru. Granula eosinofil berisi kolagenase yang secara spesifik merusak kolagen tipe I dan yang merupakan dua komponen penyusun jaringan ikat parenkim paru manusia.

Eosinofil adalah leukosit multifungsional yang berperan pada berbagai proses inflamasi termasuk infeksi (parasite, bacterial dan viral), cedera jaringan non-spesifik, keganasan, dan penyakit alergi. Sebagai Respon dari berbagai macam stimulus, eosinofil direkrut dari sirkulasi ke jaringan dimana eosinofil memodulasi respon imun melalui bermacam mekanisme. Dipicunya eosinofil oleh sitokin-sitokin, immunoglobulin, dan komplemen berdampak pada pelepasan

Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online : 2540-8844

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

susunan sitokin pro-inflamasi, seperti kemokin, interleukin (diantaranya IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-16, IL-18), transforming growth factor (TGF)-α/β, mediator lipid seperti as platelet-activating factor (PAF) and leukotriene (LT)C4, radikal bebas, dan DNA mitokondrial. Molekul-molekul ini memiliki efek pro-inflamasi yang menyebabkan peningkatan system adhesi, pergerakan sel, regulasi dari permeabilitas vascular, sekresi mucus, dan konstriksi otot polos.

Eosinofil relatif jarang terdapat di paru-paru normal sehingga keberadaannya menjadi menonjol ketika ditemukan pada sampel lumen baik di jaringan dan saluran napas dalam jumlah meningkat. Sejauh mana eosinofil menyebabkan jaringan kerusakan penyakit ini masih kontroversial, tetapi sebagian besar bukti menunjukkan eosinofil sebagai sel efektor proinflamasi pada penyakit-penyakit tidak menular di mana eosinofil menonjol.

Keterbatasan Penelitian

Keterbatasan dari penelitian ini adalah waktu sensitisasi ovalbumin dan pemberian perlakuan asap mesin diesel hanya dilaksanakan dalam jangka waktu akut sehingga tidak dapat memperoleh perubahan histopatologi epitel saluran pernafasan akibat inflamasi kronik dan juga peralatan yang digunakan untuk

pemaparan asap diesel masih dirancang sendiri.

SIMPULAN DAN SARAN

Simpulan

Dari hasil penelitian dan pembahasan dapat disimpulkan:

- Jumlah eosinofil di jaringan peribronkhial paru pada kelompok control positif yang diinduksi ovalbumin lebih tinggi dibandingkan dengan kelompok control negatif yang tidak diinduksi ovalbumin.
- 2. Jumlah eosinofil di jaringan peribronkhial paru pada kelompok perlakuan yang diinduksi ovalbumin lebih rendah dibandingkan dengan kelompok positif yang hanya diinduksi ovalbumin. Namun berbedaannya tidak begitu signifikan

Saran

- Perlu dilakukan penelitian lebih lanjut dengan memperhatikan jangka waktu pemaparan asap rokok dan jenis sensitisasi ovalbumin serta pengaruh yang lebih spesifik terhadap alergi saluran pernapasan.
- Pada peneliti berikutnya diharapkan dapat melakukan teknik pengambilan dan pengelola jaringan yang lebih baik lagi.

Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online : 2540-8844

lebih baik.

- Pada penelitian selanjutnya dirapkan dapat melihat pada seluruh lapangan padang agar hasil yang didapatkan
- 4. Untuk penelitian selanjutnya dapat dilihat struktur kerusakannya.

DAFTAR PUSTAKA

- Irsa L. Penyakit alergi saluran napas yang menyertai asma. 2005;7(1):19-25.
- Paramita OD, Harsoyo N, Setiawan H. Hubungan asma, rinitis alergik, dermatitis. 2013;14(6):391-97.
- World Health Organization. Research Guidline for Evaluating the Safety and Efficacy of Herbal Medecine. Manila; 1993.
- Subhasini, Chauhan PS, Kumari S, Kumar JP, Chawla R. Dash D, et al. Intranasal curcumin and its evaluation in murine model of asthma. Int Immunopharmacol. 2013; 733-43.
- 5. Takizawa H1, Ohtoshi T, Kawasaki S, Abe S, Sugawara I, Nakahara K, Matsushima K, Kudoh S. Diesel exhaust particles activate human bronchial epithelial cells to express inflammatory mediators in the airways. 2000:5(2):197-203.
- Surjanto E., Reviono, Nugroho H.
 2003. New insight of COPD. Temu

ilmiah respirologi 2003, hal: 117-31.

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

- 7. Lee EJ, Song MJ, Kwon HS. Oral administration of fermented red gingseng suppressed ovalbumininduced allergic responses in female BALB/c mice. Phytomed. 2012
- 8. Barlianto W, Chandra K. Pengembangan model mencit alergi dengan paparan kronik ovalbumin. Jur K Brawijaya Vol 25. 2009 (cited 2016 juni 9); pp. 1-5.
- Lisa AB, Donald YM. Allergen sensitization through the skin induces systemic allergic responses. Journal of Allergy and Clinical Immunology. 2000.
- 10. Juel JE, Pedersen B, Narvestadt E, Dahl R. Blood eosinophil and monocyte counts are related to smoking and lung function. Journal of Respiratory Medicine. 1998(92):63-69
- 11. Darryl J, Adamko BL, Gerald JG, Allison DF, David BJ. Ovalbumin Sensitization Changes the Inflammatory Response to Subsequent Parainfluenza Infection: Eosinophils Mediate Airway Hyperresponsiveness, M2 Muscarinic Receptor Dysfunction, and Antiviral Effects. Journal of Allergy and Clinical Immunology.2009
- 12. Foster PS, Hogan SP, Ramsay AJ,

JKD, Vol. 7, No. 2, Mei 2018: 433-441

Volume 7, Nomor 2, Mei 2018

Online: http://ejournal3.undip.ac.id/index.php/medico

ISSN Online : 2540-8844

Chrisantus Ronald Bria Seran, Suprihati, Yanuar Iman Santosa

Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. The Journal of experimental medicine. 1996;183(1):195-201.

- 13. Bayram H, Devalia J, Sapsfor R, et al.

 The Effect of diesel exhaust particles on cell function and Release of Mediators for Human bronchial Ephithelial Cell in Vitro. 1994:243-47.
- Setiono K. Manusia, Kesehatan Dan Lingkungan. Jakarta; 2000.