

PENGARUH PEMBERIAN JUS BUAH NAGA MERAH (Hylrocereus polyrhizus) TERHADAP KADAR KOLESTEROL TOTAL PRIA HIPERKOLESTEROLEMIA

Argan Caesar Budiatmaja, Etika Ratna Noer*)

Program Studi Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro Jl.Dr.Sutomo No.18, Semarang, Telp (024) 8453708, Email: gizifk@undip.ac.id

ABSTRACT

Background: Cardiovascular disease can be caused by a condition called hypercholesterolemia. Hypercholesterolemia was a condition in which blood total cholesterol levels were above the normal limit. Total Cholesterol levels in blood was influenced by the intake of fats and cholesterols. Consumption of foods containing tocotrienol, niasin, fiber, and vitamin C can reduce blood total cholesterol levels, one of which is the red dragon fruit. This study aims to determine the effect of red dragon fruit juice (Hylrocereus polyrhizus) on total cholesterol levels in men with hypercholesterolemia.

Method: This study was a quasi-experimental design with a control group pre-post test. Subjects were employees aged 35-50 years, as many as 30 people that have total cholesterol levels of 200-230 mg/dl. The intervention was conducted for 21 days. The treatment group was given red dragon fruit juice with dose 2,86g/kg body weight/day, and the control group was given a placebo in the form of zero calorie syrup. Blood total cholesterol levels were taken after the subjects fasted for 10 hours and analyzed using the CHOD-PAP method. The normality test uses Shapiro Wilk. Statistical analyzes using dependent t-test, independent t-test, Mann Whitney, and Wilcoxon.

Result: Total cholesterol levels before the intervention in the treatment group was 226.00 mg/dl and after the intervention was 212.47 mg/dl. There was a significant differences total cholesterol levels in the treatment group (p=0,043). Total cholesterol levels before the intervention in the control group was 218.73 mg/dl and after the intervention was 227.53 mg/dl. There is a no significant differences total cholesterol levels in the control group (p=0,102). There was a significant differences in the change in total cholesterol levels between the two groups after the intervention (p=0,008).

Conclusion: There was a significant differences in total cholesterol levels before and after administration of red dragon fruit juice in the treatment group. There was a significant differences in total cholesterol levels between control and treatment groups.

Keywords: red dragon fruit; tocotrienol; fiber; vitamin C; total cholesterol

ABSTRAK

Latar belakang: Penyakit jantung dan pembuluh darah dapat disebabkan karena suatu kondisi yang disebut hiperkolesterolemia. Hiperkolesterolemia merupakan suatu kondisi dimana kadar kolesterol total dalam darah lebih dari batas normal. Kadar kolesterol total dalam darah dipengaruhi oleh asupan lemak dan kolesterol. Konsumsi bahan makanan yang yang mengandung tokotrienol, niasin, serat, dan vitamin C dapat menurunkan kadar kolesterol total dalam darah, salah satunya adalah buah naga merah. Penelitian ini bertujuan untuk mengetahui pengaruh pemberian jus buah naga merah (Hylrocereus polyrhizus) terhadap kadar kolesterol total pria hiperkolesterolemia.

Metode: Penelitian ini merupakan quasi-experimental dengan rancangan control group pre-post test. Subjek penelitian adalah pria berusia 35-50 tahun sebanyak 30 orang memiliki kadar kolesterol total 200-239 mg/dl. Pemberian intervensi dilakukan selama 21 hari. Kelompok perlakuan diberikan jus buah naga merah dengan dosis 2,86g/kgBB/hari, dan kelompok kontrol diberikan plasebo berupa sirup nol kalori. Kadar kolesterol total darah diambil setelah subjek berpuasa selama 10 jam dan dianalisis menggunakan metode CHOD-PAP. Uji normalitas menggunakan Shapiro Wilk. Analisis statistik menggunakan uji dependent t, independent t-test, Mann Whitney, dan Wilcoxon.

Hasil: Kadar kolesterol total sebelum intervensi kelompok perlakuan yaitu 226,00 mg/dl dan setelah intervensi 212,47 mg/dl. Terdapat perbedaan yang bermakna kadar kolesterol total pada kelompok perlakuan (p=0,043). Kadar kolesterol total sebelum intervensi kelompok kontrol yaitu 218,73mg/dl dan setelah intervensi 227,53 mg/dl. Tidak terdapat perbedaan bermakna kadar kolesterol total pada kelompok kontrol (p=0,102). Terdapat perbedaan pada perubahan kadar kolesterol total antara kedua kelompok setelah perlakuan (p=0,008)

Simpulan : Terdapat perbedaan bermakna kadar kolesterol total sebelum dan setelah pemberian jus buah naga merah pada kelompok perlakuan. Terdapat perbedaan bermakna perubahan kadar kolesterol total antara kelompok kontrol dan perlakuan.

Kata kunci: buah naga merah; kolesterol total

*)Penulis Penanggungjawab

PENDAHULUAN

Penyakit jantung dan pembuluh darah merupakan penyebab utama kematian di dunia, dan diperkirakan pada tahun 2015 angka kematian penyakit jantung dan pembuluh darah meningkat menjadi 20 juta. Berdasarkan World Health Orgnization (WHO), angka kematian di Indonesia yang diakibatkan oleh penyakit jantung dan pembuluh darah yaitu pada tahun 2002 sebesar 28% dan mengalami peningkatan pada tahun 2008 sebesar 30%.^{1,2} Berdasarkan Profil Kesehatan Provinsi Jawa Tengah penyakit jantung dan pembuluh darah merupakan kasus tertinggi yaitu sebesar 880.193 (62,43%) dari total 1.409.857 kasus penyakit tidak menular.3 Kejadian penyakit jantung dan pembuluh darah dipengaruhi oleh banyak faktor, salah satunya disebabkan oleh hiperkolesterolemia, yaitu kondisi dimana kadar kolesterol dalam darah meningkat di atas batas normal. Hal ini ditunjukan pada penelitian yang dilakukan di Semarang pada tahun 2007-2008, dalam darah kolesterol >200mg/dl meningkatkan risiko terjadinya penyakit jantung dan pembuluh darah sebesar 1,8 kali lebih besar dibandingkan dengan kolesterol darah <200 mg/dl.4

Pada penderita hiperkolesterolemia umumnya dijumpai pada usia dewasa. Pada lakilaki kolesterol meningkat dari umur 35 sampai umur 50 tahun. Sebuah penelitian di Thailand pada tahun 2006 menunjukkan bahwa penderita hiperkolesterolemia pada pria didominasi pada usia 30-39 tahun sebesar 22,8%, 40-49 tahun sebesar 25,6%, dan 50-59 tahun sebesar 20,9%.

Kadar kolesterol total dapat dipengaruhi oleh asupan zat gizi, yaitu dari makanan yang merupakan sumber lemak.⁵ Peningkatan konsumsi lemak sebanyak 100 mg/hari dapat meningkatkan kolesterol total sebanyak 2-3mg/dl. Keadaan ini dapat berpengaruh pada proses biosintesis kolesterol. Sintesis kolesterol dipengaruhi oleh beberapa faktor, salah satunya penurunan aktivitas HMG KoA reduktase yang dapat menurunkan sintesis kolesterol yaitu dengan mengkonsumsi serat serta vitamin yang tinggi sehingga kadarkolesterol dalam darah menurun.⁷

Aktivitas fisik yang rendah dapat mempengaruhi kadar kolesterol total.^{8,9} Pada sebuah penelitian, pekerja yang memiliki status gizi lebih mempunyai pola makan yang kurang baik dan aktivitas fisik yang rendah.¹⁰ Aktivitas fisik yang kurang dan pola makan yang salah berisiko mengalami penumpukan lemak dalam tubuh.⁵ Sehingga untuk mencegah hal itu terjadi,

perlu dilakukan upaya untuk menurunkannya, yaitu dapat dengan menggunakan obat dan melalui pengaturan diet. 9,11 Dalam pengaturan diet dilakukan dengan mengurangi asupan lemak dan energi total, serta meningkatkan asupan sayuran dan buah-buahan sebagai sumber serat dan vitamin. 12 Salah satu sumber zat gizi dari jenis buah-buahan tersebut adalah buah naga merah.

Buah Naga Merah (Hylocereus polyrhizus) merupakan pangan fungsional yang baik untuk kesehatan. Dalam buah naga merah mengandung tokotrienol yang tinggi, yaitu sebagai inhibitor reduktase.13 Proses HMG-KoA biosintesis kolesterol dapat dihambat oleh tokotrienol, yaitu zat gizi esensial anggota vitamin E yang dapat menghambat enzim HMG-KoA reduktase vang mengontrol jalur biosintesis kolesterol dalam hati, menghambat pembentukan mevalonat sehingga pembentukan kolesterol akan menurun.¹⁴ Selain tokotrienol, kandungan serat yang tinggi pada buah naga merah akan menghambat absorbsi asam empedu di usus, sebagai kompensasinya hati akan mensintesis lebih banyak asam empedu yang membutuhkan kolesterol. sehingga untuk mendapatkan jumlah kolesterol yang cukup, hati akan memproduksi lebih banyak reseptor untuk menangkap kolesterol dari darah.¹⁵ Dengan demikian, kadar kolesterol darah berkurang. Terdapat juga zat gizi lainnya dalam buah naga merah, seperti niasin, PUFA dan vitamin C yang dapat menurunkan kadar kolesterol dalam darah. Penelitian terdahulu menunjukan buah naga dapat menurunkan kadar kolesterol total darah tikus putih (Rattus norvegicus) secara signifikan dengan dosis 3,6 g/200 g BB/hari, 7,2 g/200 g BB/hari, dan 10,8 g/200 g BB/hari selama 21 hari dengan penurunan kolesterol darah sebesar 34,8 mg/dl.¹⁵ Penelitian pada manusia di Malaysia, menunjukan bahwa pemberian jus buah naga merah sebanyak 400 gram dapat menurunkan kadar kolesterol total pada penderita diabetes tipe 2.34

Berdasarkan uraian tersebut, peneliti tertarik untuk melakukan penelitian tentang pengaruh pemberian jus buah naga merah (Hylocereus polyrhizus) terhadap kadar kolesterol total pria hiperkolesterolemia.

METODE PENELITIAN

Penelitian ini merupakan penelitian *quasi-experimental* dengan rancangan *pre-post group design.* ¹⁶ Variabel bebas dalam penelitian ini adalah pemberian jus buah naga merah dengan dosis 2,86g/kgBB yang ditambahkan 70ml air dan variabel terikatnya adalah kadar kolesterol total pria hiperkolesterolemia pekerja kantoran.

Pelaksanaan penelitian telah mendapat persetujuan dari Komite Etik Fakultas Kedokteran Universitas Diponegoro melalui terbitnya *Etichal Clearance*.

Subjek penelitian adalah pekerja di Kantor Dinas Binamarga, Dinas Pengelolaan Keuangan Aset daerah, dan Bappeda. Kriteria inklusi penelitian ini pria dengan usia 35-50 tahun yang memiliki kadar kolesterol total 200-239 mg/dl. Subjek tidak sedang mengonsumsi obat-obatan antihiperlipidemia dan suplemen selama penelitian, tidak mengkonsumsi alkohol, dan tidak dalam keadaan sakit atau dalam perawatan dokter berkaitan dengan penyakit jantung koroner, diabetes mellitus, hipertensi, gagal ginjal, dan penyakit kronik lainnya, serta bersedia menjadi

subjek penelitian dengan mengisi informed consent.

Sedangkan, data aktifitas fisik dikumpulkan menggunakan kuesioner aktifitas fisik *Baecke*. Aktifitas fisik yang dimaksud adalah aktifitas fisik saat berolahraga dan pada waktu luang. Aktifitas fisik subjek dihitung menggunakan rumus indeks aktifitas fisik olahraga dan aktifitas waktu luang. Aktifitas fisik dikategorikan dalam 2 kelompok, yaitu aktif dan tidak aktif.³⁵

Data aktifitas fisik diambil melalui kuesioner aktifitas fisik. Masing-masing pertanyaan dari kuesioner tersebut dinilai dengan angka koding yang merupakan skor yang dihitung dengan rumus berikut:

$$Indeks \ Aktifitas \ Olah \ Raga = \frac{\{[(No.2a1 \times No.2a2 \times No.2a3) + (No.2a1 \times No.2a2 \times No.2a3)] + No.3 + No.4 + No.5\}}{4}$$

Pertanyaan No.3 hingga 5 memiliki skor 1 sampai 5, sedangkan untuk pertanyaan kolom No.2 memiliki skor masing-masing sebagai berikut:

	0 = 4
Intensitas rendah	0.76
Intensitas sedang	1.26
Intensitas tinggi	1.76
< 1 jam	0.5
1-2 jam	1.5
2-3 jam	2.5
3-4 jam	3.5
> 4 jam	4.5
< 1 bulan	0.04
1-3 bulan	0.17
4-6 bulan	0.42
7-9 bulan	0.67
> 9 bulan	0.92

Skor yang telah dihitung berdasarkan rumus kemudian digolongkan sesuai dengan skala Likert sebagai berikut:

Skor Indeks Aktifitas Fisik	Status Aktivitas Fisik
Saat Berolahraga	(Skala Likert)
Sangat Aktif	4.5
Aktif	3.5
Cukup Aktif	2.5
Kurang Aktif	1.5
Sangat Tidak Aktif	0.5

Pengukuran status gizi subjek menggunakan perhitungan Indeks Massa Tubuh (IMT) dengan rumus:

$$IMT = \frac{Berat \, Badan \, (kg)}{Tinggi \, Badan \, (m)^2}$$

IMT	Kategori
$18,5 - 22,9 \text{ kg/m}^2$	Normal
$23 - 24.9 \text{ kg/m}^2$	Overweight
$> 25 \text{ kg/m}^2$	Obesitas

Setelah itu, perhitungan tersebut dikategorikan menurut cut off point sebagai berikut:

Penentuan subjek dilakukan dengan metode *consecutive sampling* dan didapatkan sebanyak 82 orang bersedia diambil darahnya untuk proses skrining awal dan diperoleh sebanyak 32 orang yang memenuhi kriteria inklusi penelitian, kemudian dipilih dengan cara membagi dalam dua kelompok sesuai dengan jumlah sampel minimal, yaitu kelompok perlakuan dan kelompok kontrol yang terdiri dari 16 orang untuk masingmasing kelompok.

Kelompok perlakuan mendapatkan jus buah naga merah dengan dosis 2,86g/kgBB yang ditambahkan 70 ml air yang dihaluskan dengan menggunakan blender yang diberikan setiap hari. Sedangkan kelompok kontrol mendapatkan plasebo berupa air sirup rendah kalori rasa cocopandan yang berwarna merah. Pemberian jus buah naga merah dan plasebo dilakukan selama 21 hari.

Variabel terikat dalam penelitian ini adalah kadar kolesterol total. Data kadar kolesterol total diambil oleh pihak laboratorium "P" melalui pembuluh darah vena setelah subjek penelitian berpuasa ±10 jam. Metode pengukuran kadar kolesterol total menggunakan metode *Cholesterol Oxidase Phenol Amino Phenazone* (CHOD-PAP). Sampel darah diambil sebanyak 2 kali, yaitu 2 hari sebelum intervensi dan 1 hari setelah intervensi (hari ke-22) untuk mengetahui kadar kolesterol total sebelum dan setelah intervensi.

Varibel perancu dalam penelitian ini adalah asupan zat gizi, yaitu protein, lemak, kolesterol, serat, PUFA dan vitamin C yang berasal dari konsumsi makanan dan minuman selama intervensi dan dicatat menggunakan formulir *food*

recall 24 jam. Data asupan zat gizi yang diperoleh dalam bentuk URT dan dikonversikan ke dalam satuan gram, kemudian dihitung menggunakan program Analisis kecukupan nutrisurvey. kebutuhan energi, protein, lemak, **PUFA** perhitunggan individu berdasarkan pada menggunakan rumus Mifflin, sedangkan kecukupan kebutuhan serat, kolesterol dan vitamin C berdasarkan Angka Kecukupan Gizi (AKG) 2013. Kepatuhan subjek mengonsumsi jus buah naga merah dicatat dengan menggunakan formulir kepatuhan.

Untuk menguji kenormalan data menggunakan uji *Shapiro-Wilk*. Perbedaan kadar kolesterol total sebelum dan sesudah intervensi pada setiap kelompok diuji dengan menggunakan *dependent / paired t-test*. Perbedaan perubahan kadar kolesterol total pada kedua kelompok dianalisis dengan menggunakan uji *independent t-test* karena data normal.

HASIL PENELITIAN Karakteristik Subjek

Subjek penelitian berjumlah 32 orang. Seluruh subjek adalah pria dengan usia 35 - 50 tahun. Dalam penelitian ini terdapat subjek yang *drop out*, masing-masing satu orang pada tiap kelompok, sehingga jumlah responden menjadi 30 orang. Subjek dibagi dalam kelompok kontrol dan perlakuan, masing-masing kelompok berjumlah 15 orang. Distribusi umur, status gizi, dan kadar kolesterol total sebelum dilakukannya intervensi dapat dilihat pada Tabel 1.

Tabel 1. Distribusi Umur, Status Gizi, dan Kadar Kolesterol Total

Karakteristik subjek	Mean±SD]	Kontrol (n=15)	Mean ±SD	I	Perlakuan (n=15)	P
	:\ :\:\:		(11 10)	_		(11 10)	
		N	%		n	%	
Umur							
35-40 tahun		5	33.3%		5	33.3%	
41-45 tahun	41.87±5.75	7	46.7%	43.20±6.10	3	20.0%	0.472^{2}
46-50 tahun		3	20.0%		7	46.7%	
Status Gizi							
Normal(18,5-22,9kg/m ²)		6	40.0%		1	6.70%	

Overweight(23-24,9kg/m ²) Obesitas (\geq 25 kg/m ²)	25.35±5.37	3 6	20.0% 40.0%	26.61±3.40	4 10	26.7% 66.7%	0.206^2
Kolesterol Total Pre	218.73±12.93			226.00±11.54			0.116 ¹

¹ independent t-test

Berdasarkan Tabel 1, diketahui bahwa sebagian besar subjek dalam penelitian pada kelompok kontrol dan kelompok perlakuan berumur 41-50 tahun (66.7%). Tabel 1 juga menunjukan 9 orang pada kelompok kontrol dan 14 orang pada kelompok perlakuan memiliki IMT lebih dari 23kg/m², sehingga sebagian besar subjek penelitian dapat dikategorikan berada pada status

gizi *overweight* dan obesitas. Hasil uji beda distribusi umur, status gizi, dan kadar kolesterol total menunjukkan tidak terdapat perbedaan secara bermakna terhadap kedua kelompok (p>0.05). Distribusi aktifitas fisik subjek pada kelompok kontrol dan kelompok perlakuan dapat dilihat pada Tabel 2.

Tabel 2. Distribusi Aktifitas Fisik Subiek

Kategori Aktifitas Fisik		Kontrol (n=15)	Perlakuan (n=15)	
	n	%	n	0/0
Aktif	3	20.0%	4	26.7%
Tidak Aktif	12	80.0%	11	73.3%

Berdasarkan Tabel 2, diketahui bahwa aktifitas fisik kedua kelompok sebagaian besar berada pada kategori tidak aktif, berdasarkan pengkajian aktifitas fisik subjek, diketahui bahwa sebagian besar responden pada setiap hari kerja

berada di kantor dan hanya bekerja di depan meja kerja, serta sangat jarang untuk berolahraga.

Asupan Zat Gizi Selama Intervensi

Persen kecukupan kebutuhan zat gizi selama intervensi pada kelompok kontrol dan kelompok perlakuan dapat dilihat pada Tabel 3.

Tabel 3. Rerata Persen Kecukupan Asupan Zat Gizi per hari selama Intervensi

Volomnok	Kontrol (n=15)	Perlakuan (n=15)	P
Kelompok -	Mean ± SD	Mean ± SD	r
%Kecukupan Protein*	122.27±34.4	115.29±25.81	0.535^{1}
%Kecukupan Lemak*	136.41±39.2	122.33±39.5	0.165^2
%Kecukupan Serat**	25.04±5.39	34.07±12.40	0.015^{1}
%Kecukupan Kolesterol**	104.8 ± 45.75	99.0±51.69	0.746^{1}
%Kecukupan PUFA*	96.8±41.62	83.1±38.48	0.357^{1}
%Kecukupan Vitamin C**	35.2 ± 18.77	40.1±35.7	0.836^{2}

¹independen t-test

Berdasarkan Tabel 3, diketahui bahwa jumlah asupan subjek terhadap kebutuhan zat gizi dan AKG 2013, diketahui bahwa rerata kecukupan protein, dan lemak kelompok berada dalam kategori lebih, karena menunjukan angka diatas 100%. Rerata kecukupan asupan kolesterol kelompok kontrol berada dalam kategori lebih, sedangkan pada kelompok perlakuan pada

kategori kurang. Rerata kecukupan asupan PUFA kelompok kontrol berada dalam kategori lebih, sedangkan pada kelompok perlakuan berada pada kategori kurang. Rerata kecukupan asupan serat dan vitamin C kedua kelompok berada dalam kategori kurang, tetapi menunjukan rerata kecukupan serat dan vitamin C pada kelompok perlakuan lebih besar daripada kelompok kontrol. Ada

² uji beda *mann-whitney*

²uji beda *mann-whitney*

^{*}dihitung berdasarkan kebutuhan individu

^{**}dihitung berdasarkan AKG 2013

perbedaan yang signifikan pada kecukupan asupan serat antara kelompok kontrol dan perlakuan, sehingga perlu dilakukan uji korelasi untuk mengetahui hubungan antara asupan zat gizi terhadap kadar kolesterol total

setelah intervensi. Analisis korelasi antara asupan zat gizi terhadap kadar kolesterol total pada kelompok kontrol dan perlakuan dapat dilihat pada Tabel 4.

Tabel 4. Analisis korelasi antara Asupan Zat Gizi terhadap Kadar Kolesterol Darah

Kelompok	Variabel yang berpengaruh	P
Kontrol	Asupan protein	0.273*
	Asupan lemak	0.142*
	Asupan serat	0.235*
	Asupan kolesterol	0.932*
	Asupan PUFA	0.770*
	Asupan Vitamin C	0.642*
Perlakuan	Asupan protein	0.052*
	Asupan lemak	0.223*
	Asupan serat	0.262*
	Asupan kolesterol	0.097*
	Asupan PUFA	0.909*
	Asupan Vitamin C	0.689*

^{*}uji rank-spearman

Berdasarkan Tabel 4, diketahui bahwa uji statistik korelasi antara asupan zat gizi selama intervensi, yaitu protein, lemak, serat, kolesterol, PUFA, dan vitamin C terhadap kadar kolesterol total setelah intervensi, baik pada kelompok kontrol maupun perlakuan menunjukan tidak ada hubungan atau keterkaitan yang bermakna

(p>0.05). Tetapi asupan lemak dan serat pada kelompok kontrol, serta asupan protein, lemak, dan kolesterol pada kelompok perlakuan menunjukan p<0.25, sehingga perlu dilakukan uji lanjut menggunakan analisis regresi untuk mengetahui seberapa besar persen pengaruh variabel perancu tersebut terhadap kadar kolesterol total.

Tabel 5. Analisis regresi beberapa variabel perancu terhadap kadar kolesterol total

Kelompok	Variabel yang berpengaruh	Adjusted R	P
Kontrol	Asupan Lemak	0.050	0.729
	Asupan Serat		0.518
Perlakuan	Asupan Protein	0.115	0.210
	Asupan Lemak		0.334
	Asupan Kolesterol		0.468

^{*}uji regresi ganda

Variabel independen: protein, lemak, serat, kolesterol

Variabel dependen : kolesterol total

Tabel 5 menunjukan nilai adjusted R pada kelompok kontrol adalah 0.050 yang artinya sebesar 5% variabel perancu antara lain asupan lemak dan serat selama intervensi mempengaruhi kadar kolesterol total. Sedangkan pada kelompok perlakuan menunjukan nilai adjusted R adalah 0.115 yang artinya sebesar 11,5% variabel perancu antara lain asupan protein, lemak, dan kolesterol selama intervensi mempengaruhi kadar kolesterol total.

Pengaruh Pemberian Jus Buah Naga Merah terhadap Kadar Kolesterol Total Darah

Intervensi yang diberikan pada penelitian ini adalah pemberian jus buah naga merah kepada kelompok kontrol dengan dosis 2,86gr/kgBB selama 21 hari, sedangkan kelompok kontrol mendapatkan plasebo. Pengaruh pemberian jus buah naga merah terhadap kadar kolesterol total pada kelompok kontrol dan perlakuan dapat dilihat pada Tabel 6.

Kelompok	Kontrol (n=15)	Perlakuan (n=15)	P
	mean±SD	mean±SD	•
Kadar Kolesterol Total pre (mg/dl)	218.73±12.93	226.00±11.54	0.116^2
Kadar Kolesterol Total post (mg/dl)	227.53±19.16	212.47±21.62	0.041^{2}
∆ Kadar Kolesterol Total	8.80 ± 19.50	-13.53±23.50	0.008^{2}
%	4.22	5.80	
p	0.102^{1}	0.043^{1}	

Tabel 6. Perbedaan kadar Kolesterol Total sebelum dan setelah intervensi

Pada kelompok perlakuan terjadi penurunan kadar kolesterol total, dan hasil uji beda menunjukan adanya perbedaan kolesterol total yang bermakna pada sebelum dan sesudah perlakuan (P<0,05). Persen penurunan kadar kolesterol total yang terjadi pada kelompok perlakuan adalah sebesar 5.8%. Hasil uji beda perubahan kadar kolesterol total pada kelompok kontrol dan perlakuan menujukan adanya perbedaan yang bermakna (P<0,05).

PEMBAHASAN Karakteristik Subjek

Karakteristik subjek dalam penelitian secara uji statistik menunjukkan tidak terdapat perbedaan umur pada kelompok kontrol dan perlakuan, sehingga subjek tergolong homogen. Status gizi subjek sebagian besar adalah overweight dan obesitas, hal ini ditunjukan pada kelompok perlakuan sebesar 66.7% dari jumlah responden adalah obesitas, dan pada kelompok perlakuan sebesar 40% adalah overweight, sedangkan sisanya adalah obesitas dan normal. Hasil uji statistik menunjukkan tidak terdapat perbedaan status gizi antara kelompok kontrol dan perlakuan. Sehingga dapat disimpulkan bahwa karakteristik subjek pada penelitian ini sudah sesuai dengan faktor yang dapat meningkatkan risiko hiperkolestrolemia.

Usia dan jenis kelamin berhubungan erat peningkatan kadar kolesterol. penderita hiperkolesterolemia umumnya dijumpai pada usia dewasa. Pada laki-laki kolesterol meningkat sampai umur 50 tahun. 18 Sebuah penelitian di Thailand pada tahun 2006 pria menunjukkan bahwa pada penderita hiperkolesterolemia didominasi pada usia 30-39 tahun sebesar 22,8%, 40-49 tahun sebesar 25,6%, dan 50-59 tahun sebesar 20,9%.19 Selain usia dan jenis kelamin, status gizi dapat menjadi faktor yang mempengaruhi profil lipid. Subjek penelitian ini rata-rata masuk ke dalam kategori overweight dan obesitas. Sebaran subjek obesitas banyak

ditemukan pada kelompok perlakuan dibandingkan dengan kelompok kontrol. Pada penderita obesitas sering terjadi gangguan metabolisme lipoprotein, sehingga terdapat kecenderungan adanya peningkatan kadar kolesterol.

Pada saat skrining awal, hasil cek laboratorium kadar kolesterol total seluruh responden yang menjadi sampel penelitian menunjukan angka pada kategori batas tinggi, dan secara uji statistik menunjukkan tidak terdapat perbedaan pada kelompok kontrol dan perlakuan, sehingga subjek tergolong homogen. Kadar kolesterol total pada kategori batas tinggi, dapat menunjukan peningkatan risiko hiperkolestrolemia. Hiperkolesterolemia merupakan salah satu faktor risiko terjadinya penyakit kardiovaskuler. Suatu penelitian yang dilakukan oleh Multipple Risk Factor International Trial (MRFIT) pada 360.000 pria berusia 35-57 tahun pada 18 kota di Amerika selama enam tahun menyimpulkan bahwa ternyata insiden koroner paling rendah apabila kadar kolesterol senantiasa berada di bawah 200 mg/dl.

Aktifitas fisik kedua kelompok sebagaian besar berada pada kategori tidak aktif, berdasarkan pengkajian aktifitas fisik subjek, diketahui bahwa setiap hari kerja subjek berada di kantor, serta sangat jarang untuk berolahraga. Aktifitas fisik dapat mengurangi kadar kolesterol yaitu dengan meningkatkan metabolisme lemak.²⁰ Penurunan kolesterol total lebih cenderung dipengaruhi oleh berat badan, persentase lemak tubuh dan rendahnya konsumsi lemak.^{21,22}

Gambaran Asupan Zat Gizi Responden

Asupan zat gizi subjek selama intervensi dapat mempengaruhi kadar kolesterol total, yaitu asupan protein, lemak, kolesterol, serat, PUFA, vitamin A dan vitamin C.

Asupan protein yang tinggi dengan status gizi sangat erat hubungannya pada perubahan profil lipid. Asam amino yang terdapat pada protein diubah menjadi asetil ko-A yang berperan

¹paired sample t-test

²independet t-test

dalam viosintesis kolesterol didalam tubuh. ^{8,23} Sehingga, apabila asupan protein berlebihan, asam amino yang berasal dari protein akan disimpan sebagai lemak. ²⁴

Rerata asupan protein selama intervensi pada kelompok kontrol lebih tinggi daripada pada kelompok perlakuan. Anjuran asupan protein sehari-hari menurut AKG 2013 adalah 65 g. Ratarata asupan protein dari kedua kelompok tergolong normal, asupan sudah memenuhi 100% dari asupan seharusnya.

Asupan tinggi lemak dan kolesterol juga dapat menyebabkan peningkatan kolesterol total. Rata-rata peningkatan asupan kolesterol 100 mg/hari dapat meningkatkan serum kolesterol 2-3 mg/dl. Anjuran asupan lemak sehari-hari menurut AKG 2013 adalah 73 g. Pada penelitian ini menunjukan rerata asupan lemak selama intervensi pada kelompok kontrol lebih tinggi daripada kelompok perlakuan. Rerata asupan kolesterol pada kelompok kontrol juga lebih tinggi daripada kelompok perlakuan.

Asupan vitamin C dapat menurunkan kadar kolesterol total pada kelompok perlakuan. Vitamin berpengaruh terhadap kadar kolesterol dalam darah antara lain vitamin A, C, E dan niasin. Radikal bebas dari polusi lingkungan dan makanan dapat dicegah dengan mengkonsumsi antioksida seperti betakaroten, vitamin C dan E serta flavonoid dan golongan polifenol sehingga berpengaruh terhadap profil lipid. Flavonoid dapat meningkatkan aktivitas lipoprotein lipase sehingga berpengaruh terhadap kadar kolesterol.²⁵

Serat berpengaruh terhadap kadar kolesterol total dalam darah. Pada penelitian ini menunjukan ada perbedaan yang bermakna jumlah asupan serat pada kelompok perlakuan sebelum dan sesudah intervensi. Rerata asupan serat selama intervensi pada kelompok perlakuan lebih tinggi daripada pada kelompok kontrol. Anjuran asupan serat sehari-hari menurut AKG 2013 adalah 38 g per hari, sedangkan berdasarkan American Dietetic Association (ADA), yaitu 20-35 g/hari atau berdasarkan Dietary Reference Intake (DRI) setara dengan 14 g/1000 kkal. 26,27 Kebutuhan asupan serat pada orang dewasa untuk menanggulangi kolesterol telah ditetapkan oleh Food and Drug Administration (FDA) yaitu sebanyak minimal 10% bahan sumber serat dari total diet.²⁸ Serat yang terkandung dalam makanan jika dikonsumsi sesuai anjuran dapat menunda pengosogan lambung sehingga rasa kenyang menjadi lebih lama akibatnya asupan kalori menjadi berkurang. Pada saat seperti ini sekresi insulin akan berkurang dan diikuti dengan penghambatan kerja enzim

HMG-KoA reduktase sehingga sintesis kolesterol menurun.²⁹

Pengaruh Pemberian Jus Buah Naga Merah terhadap Kadar Kolesterol Total

Pemberian jus buah naga merah dengan 2,86gr/kgBB selama 21 hari dapat dosis berpengaruh terhadap kadar kolesterol total. Hasil uji statistik menunjukkan ada perbedaan perubahan kadar kolesterol total sebelum dan sesudah intervensi antara kedua kelompok (p<0.05), hasil pelaksanaan cek darah sesudah intervensi menunjukan kadar kolesterol total pada kelompok perlakuan lebih rendah daripada kelompok kontrol. Buah Naga Merah mengandung berbagai zat yang dapat menurunkan kadar kolesterol darah. diantaranya tokotrienol, serat, niasin, PUFA dan vitamin C. Untuk menurunkan kadar kolesterol dalam darah, yaitu dengan menurunkan proses sintesis kolesterol.

Sintesis kolesterol dipengaruhi oleh beberapa faktor, salah satunya penurunan aktivitas HMG KoA reduktase yang dapat menurunkan sintesis kolesterol. Proses biosintesis kolesterol dapat dihambat oleh tokotrienol yang terdapat pada buah naga merah, yaitu zat gizi esensial anggota vitamin E yang dapat menghambat enzim HMG-KoA reduktase yang mengontrol jalur biosintesis kolesterol dalam hati, menghambat pembentukan mevalonat sehingga pembentukan kolesterol akan menurun.

Selain itu kandungan serat pada buah naga dapat berperan menurunkan kadar kolesterol. Serat dapat menunda pengosogan lambung sehingga rasa kenyang menjadi lebih lama akibatnya asupan kalori menjadi berkurang. Pada saat seperti ini sekresi insulin akan berkurang dan diikuti dengan penghambatan kerja enzim HMG-KoA reduktase sehingga sintesis kolesterol menurun.²⁹. Keria enzim ini distimulasi oleh adanya insulin dan tiroksin tetapi dihambat oleh adanya glucagon.³⁰ Serat juga diketahui dapat mengikat asam empedu dan meningkatkan pengeluarannya melalui feses. Garam empedu yang telah terikat pada serat tidak melalui direabsorpsi kembali enterohepatik dan akan disekresi melalui feses, akibatnya terjadi penurunan jumlah garam empedu yang menuju ke hati. Penurunan ini akan meningkatkan pengambilan kolesterol dari darah untuk disintesis kembali menjadi garam empedu yang baru, sehingga terjadi penurunan kadar kolesterol dalam darah. Pengikatan empedu juga dapat merubah senyawa cholic acid menjadi chenodeoxycholic acid yang dapat menghambat reduktase.29-31 enzim HMG-KoA keria

Penghambatan enzim ini akan menghambat pembentukan mevalonat, isoprene, squalen dan kolesterol. Jika pembentukan kolesterol terhambat maka VLDL tidak akan dihidrolis dan akan menekan LDL dalam darah.^{32,33}

SIMPULAN

Pemberian jus buah naga merah pada kelompok perlakuan dengan dosis 2,86gr/kgBB setiap hari selama 21 hari berpengaruh secara bermakna terhadap penurunan kadar kolesterol total pria hiperkolesterolemia. Tidak ada perbedaan secara bermakna antara sebelum dan sesudah penelitian pada kelompok kontrol. Ada perbedaan kadar kolesterol total setelah intervensi antara kelompok kontrol dan perlakuan.

SARAN

- 1. Penderita hiperkolesterolemia pada ambang batas tinggi (kadar kolesterol total 200-239 mg/dl) dan termasuk responden penelitian kami, dapat mengkonsumsi buah naga merah sebagai salah satu sumber tokotrienol, serat, niasin, PUFA dan vitamin C sebagai makanan alternatif maupun komplementer dengan jenis makanan lain dalam menurunkan kadar kolesterol total dengan dosis 2,86 gr/ 70 kgBB per hari.
- Penelitian lebih lanjut perlu dilakukan untuk melihat pengaruh konsumsi jus buah naga merah dengan dosis yang lebih besar dapat berpengaruh lebih tinggi dalam penurunan kadar kolesterol total darah.

DAFTAR PUSTAKA

- World Health Orgnization. The Impact of chronic disease in Indonesia. Facing the facts 2002. [cited 2014 March 27]. Available from URL: http://www.who.int/chp/chronic disease report/media/impact/indonesia.pdf
- World Health Organization. Indonesia. Non Communicable Diseases Country Profiles 2011. [cited 2014 March 27]. Available from URL: http://www.who.int/nmh/countries/idn_en.pdf
- 3. Profil Kesehatan Provinsi Jawa Tengah 2011 [serial online] [cited 2014 April 15]. Available from: URL: http://jateng.bps.go.id/index.php
- Supriyono M, Soeharyo H. Faktor-faktor Risiko Kejadian Penyakit Jantung Koroner (PJK) Pada Kelompok Usia <45 tahun (Studi Kasus di RSUP Dr. Kariadi Semarang dan RS Telogorejo Semarang. [serial online] 2008 [cited 2014 March 31] Available from URL: http://eprints.undip.ac.id/6324/1/. Program Magister Program Epidemiologi Program Pascasarjana Universitas Diponegoro.

- Dewi AC. Hubungan Pola Makan, Aktivitas Fisik, Sikap dan Pengetahuan Tentang Obesitas dengan Status Gizi Pegawai Negeri Sipil di Kantor Dinas Kesehatan Provinsi Jawa Timur. 2011. Program Studi Kesehatan Masyarakat UNAIR. Available from URL: unair.ac.id/detail.php?id=43111&faktas=Kesehata n%20Masyarakat
- Kathleen MB, Mayes PA. Sintesis, Transpor dan Ekskresi Kolesterol.In: Murray RK, Granner DK, Mayes PA, Rodwell VW, editors.Biokimia Harper. Edisi 27. Jakarta: Penerbit Buku Kedokteran EGC;2009.p.239-49
- 7. Kyun, Park Sung Fruit, vegetable, and fish consumption and heart rate variability: the Veterans Administration Normative Aging Study1–3. Am J Clin Nutr 2009;89:778–86.
- Krummel DA. Medical nutrition therapy for cardiovascular disease. In: Mahan LK, Escottstump S, editors. Krause's Food, Nutrition, and Diet Therapy. 12th ed. USA: Saunders; 2008. p.834-60
- 9. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, et al. Triglycerides and Cardiovascular Disease. Circulation American Heart Association Journals 2011; 123:2292-333.
- Nadimin. Pola Makan, Aktivitas Fisik dan Status Gizi Pegawai Dinas Kesehatan Sulawesi Selatan. Media Gizi Pangan, Vol. XI, Edisi 1, Januari – Juni. 2011. Jurusan Gizi Politeknik Kesehatan Kemenkes Makassar
- 11. Anwar TB. Dislipidemia sebagai faktor resiko penyakit jantung koroner [artikel]. Fakultas Kedokteran Universitas Sumatera Utara; 2004.
- 12. Kreisberg RA, Oberman A. Medical Management of hyperlipidemia/dyslipedemia. The Journal of Clinical Endocrinology and Metabolism 2003; 88(6):2445-61.
- Norhayati, A. H. 2006. Komposisi Kimia dan Aktiviti Antioksidan Buah Pitaya Merah (HylocereusSp.) dan Kesan ke atas Paras Glukosa dan Profil Lipid Tikus yang diaruh Hiperglisemia. Thesis M. S. Universiti Putra Malaysia, Serdang.
- 14. Zhen YC, Ka YM, Yintong L. Role and classification of cholesterollowering functional foods. Journal of Functional Foods. [serial online]2011; Vol 3:61-9. [cited 2014 April 15] Available from: URL: http://www.sciencedirect.com/science/article/pii/S 1756464611000089
- 15. Pareira, F. M. M.2010. Pengaruh Pemberian Jus Buah Naga Putih(Hylocereus undatus H.) Terhadap Kadar Kolesterol Total Tikus Putih (Rattus norvegicus). Other Thesis, Universitas Sebelas Maret
- Sastroamoro, S., Ismael, S. Dasar-Dasar Metodologi Penelitian Klinis. Edisi ke-4. 2011. Jakarta: CV Sagung Seto

- 17. Executive Summary of the Third Report of the National CholesterolEducation Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adults Treatment Panel III). [serial online]2002[cited 2014 April 10] Available from:URL:http://www.nhlbi.nih.gov/guidelines/ch olesterol/atp3full.pdf
- Bahri AD. Penyakit jantung koroner dan hipertensi.USU repository [serial online] 2004 [cited 2014 April 20] Available from: URL:http://library.usu.ac.id/download/fk/gizibahri10.pdf
- Denny L, Alvin G, Vitool L, Michelle AW. Prevalence and risk factors of hypercholesterolemia among thai men and women receiving healthexaminations. Southeast Asian J Trop Med Public Health.[serialonline] 2006 ;vol 37:No.5 [cited 2014 April 10]

Availablefrom:

- URL: http://imsear.hellis.org/bitstream/123456789/32973/3/1005.pdf
- 20. Lehninger, Albert L. Principle Biochemistry, (Terj.): Thenawijaya, M., Dasar-dasar Biokimia. Jakarta: Erlangga
- 21. Barbara F, Kathy B, Phil A, Lynne TB, Lora EB, Larry D et al. Managing abnormal blood lipids: A collaborative Approach. Journal of the American Heart Association [serial online] 2005 [cited 2014 April 10]; 112:3184-3209.Available from: URL: http://circ.ahajournals.org/content/112/20/3184.full
- 22. Arthur SL, Otto AS. Response of blood lipids to exercise trainingalone or combined with dietary intervention. Medicine & science insports & exercise. [serial online] 2001 [cited 2014 April 10] Available from: URL:http://www.setantacollege.com/wp-content/uploads/Journal db
- 23. Botham KM, Mayes PA. Sintesis, transpor dan eksresi kolesterol. In: Murray RK, Granner DK, Rodwell VW, editors. Biokimia Harper. 27th ed. Jakarta: Penerbit Buku Kedokteran EGC; 2006. p.247
- 24. Guytan AC, Hall EJ. Metabolisme Lipid. Buku Ajar FisiologiKedokteran. Edisi 11. Jakarta: Penerbit Buku Kedokteran EGC;2007.p.883-94
- 25. Pandey, Kanti B, Syed IR. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Department of Biochemistry; University of Allahabad; Allahabad, India. Oxidative Medicine and Cellular Longevity 2:5, 270-278; November/December; 2009. Landes Bioscience
- Krummel DA. Medical nutrition therapy for cardiovascular disease. In: Mahan LK, Escottstump S, editors. Krause's Food, Nutrition, and Diet Therapy. 12th ed. USA: Saunders; 2008. p.833-6
- Dreher ML. Dietary Fiber Overview. Indiana: Mead Johnson Nutritionals/Bristol-Myers Squibb Company, Evansville.2001.

- 28. FDA. Health Claim: Fruit, Vegetable and Grain Product that Contain Fiber, Particularly Soluble Fiber, and Risk of Coronary Heart Disease. US Government Printing Office via GPO access. 1999;2(21):130-3.
- Lupton JR dan Turner D. Dietary Fiber: in Biochemical and Physiological Aspect of Human Nutrition. WB Sounders Company, London. 2000
- 30. Koolman J dan Rohm K-H. Atlas Berwarna dan Teks Biokimia. Hipokrates, cetakan I. 2001;168-9.278-9.
- Clara MK. Serat Makanan dan Peranannya Bagi Kesehatan. Jurnal Gizi dan Pangan. 2006;1(2):45-54
- 32. Robert K. Murray, Daryl K. Granner, Victor W. Rodwell. Biokimia Harper. Edisi 27. Jakarta: Buku Kedokteran EGC;2006.
- Sareen S. Gropper, Jack L. Smith, James L. Groff. Advance Nutrition and Human Metabolism. 5th edition. Canada: Wadsworth Cengage Learning; 2009.
- 34. Hadi, N M. 2012. Effect of Red Pittaya Fruit consumtion on Blood Glucose Level and Lipid Profile in type 2 Diabetic Subject. Other Thesis, University Putra Malaysia
- 35. Baecke JAH Burema J Frijters ER. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982; 36: 936-942.