Journal of Nutrition College, Volume 5, Nomor 3, Tahun 2016 (Jilid 3), Halaman 222-227 Online di: http://ejournal-s1.undip.ac.id/index.php/jnc

PERBEDAAN EKSKRESI YODIUM URIN (EYU) DAN TINGGI BADAN ANAK SEKOLAH DASAR DI KECAMATAN NGADIREJO KABUPATEN TEMANGGUNG DENGAN KECAMATAN SEMARANG UTARA KOTA SEMARANG

Diananda Rizki Kurniangga, Nuryanto*)

Program Studi Ilmu G izi Fakultas Kedokteran Universitas Diponegoro Jln. Prof. H. Soedarto, SH., Semarang, Telp (024) 8453708, Email : gizifk@undip.ac.id

ABSTRACT

Background: One of the optimal growth factor for student in elementary school is influenced by the status of iodine. The exact iodine examination is with Urinary Iodine Excretion (UIE). The factors that influence the iodine availability are a geographical area such as the coastal and the mountains. Iodine Deficiency Disorders (IDD) shouldn't be discovered in coastal areas, but in fact that endemic goiter areas have spreaded widely into coastal areas.

Methods: The research was analytic observational with cross-sectional design for 34 children in the fourth grade Tegalrejo's Elementary School which in mountain area at Temanggung Regancy and Bandarharjo's Elementary School which in coastal area at Semarang City. The Urinary Iodine Excretion (UIE) value obtained from the analytical method in the laboratory of Balai Litbang GAKY with spectrophotometry method. The anthropometric data of body height is obtained by measuring children's height using Microtoise. The protein, zinc, and iron data are obtained through the recall method in 3x24 hours and then processed using application called Nutrisurvey for Windows. Statistics analysis to see differences used independent t-test and Mann-Whitney test.

Results: The average value of Elementary School student UIE in mountains area is $145.4 \pm 62.7 \mu g / L$ while the lowlands area is $337.5 \pm 199.9 \mu g / L$. This result shows the differences levels of UIE on Elementary School in mountains area with lowlands area (p = 0.001). The childen's height median in mountain area is 126.7 cm, while the median in lowlands is 137 cm. This results show differences of children's height in Elementary School between the mountain areas with lowlands areas (p = 0.0001).

Conclusion: There are significant differences in Urinary Iodine Excretion (UIE) and height between Elementary School students in Ngadirejo District Temanggung Regency with North Semarang District Semarang City.

Keywords: EYU, Height, Coastal Areas, Mountains

ABSTRAK

Latar Belakang: Pertumbuhan anak sekolah dasar yang optimal salah satunya dipengaruhi oleh status yodium. Status yodium dapat diketahui salah satunya dengan cara Ekskresi Yodium Urin (EYU). Faktor yang mempengaruhi ketersediaan yodium adalah wilayah geografis seperti di pesisir pantai dan di pegunungan. Daerah pesisir pantai yang seharusnya tidak ditemui Gangguan Akibat Kekurangan Yodium (GAKY), tetapi pada kenyataannya mulai ditemukan GAKY di daerah ini.

Metode: Jenis penelitian ini adalah analitic observational dengan desain cross-sectional pada 34 anak kelas IV SD Tegalrejo yang berada di daerah pegunungan Kabupaten Temanggung dan SD Bandarharjo yang berada di pesisir pantai Kota Semarang. Kadar Ekskresi Yodium Urin (EYU) diperoleh dari analisis di laboratorium Balai Litbang GAKY dengan metode spektrofotometri. Data antropometri tinggi badan diperoleh dari pengukuran tinggi badan anak menggunakan microtoise dengan ketelitian 0,1cm Data asupan protein, seng, dan besi, diperoleh melalui metode recall 3x24jam yang kemudian diolah menggunakan Nutrisurvey for Windows. Analisis statistik untuk melihat perbedaan menggunakan uji independent t-test dan Mann-Whitney test.

Hasil: Rerata EYU pada anak SD di daerah pegunungan sebesar $145.4\pm62.7 \mu g/L$ sedangkan daerah pesisir pantai sebesar $337.5\pm199.9 \mu g/L$. Hasil penelitian menunjukkan terdapat perbedaan kadar EYU pada anak SD di daerah pegunungan dengan daerah pesisir pantai (p=0,001). Median tinggi badan anak SD di daerah pegunungan sebesar 126.7 cm, sedangkan median anak sekolah dasar di pesisir pantai sebesar 137 cm. Hasil penelitian menunjukkan ada perbedaan tinggi badan anak sekolah dasar antara daerah pegunungan dengan daerah pesisir (p=0,0001).

Kesimpulan : Terdapat perbedaan Ekskresi Yodium Urin (EYU) dan tinggi badan yang signifikan antara anak Sekolah Dasar di Kecamatan Ngadirejo Kabupaten Temanggung dengan Kecamatan Semarang Utara Kota Semarang.

Kata Kunci: EYU, Tinggi Badan, Pesisir Pantai, Pegunungan

PENDAHULUAN

Anak usia sekolah merupakan generasi penerus bangsa dan modal pembangunan, sehingga tingkat kesehatannya perlu dibina dan ditingkatkan.

Salah satu upaya kesehatan tersebut adalah dengan perbaikan gizi anak sekolah dasar. ¹ Tinggi badan anak sekolah dasar yaitu antropometri yang menggambarkan keadaan pertumbuhan skeletal.

^{*)} Penulis Penanggungjawab

Pertumbuhan anak sekolah dasar yang optimal tergantung pemberian asupan dengan gizi makro dan mikro yang sesuai kebutuhan. Anak yang sering mendapat asupan gizi makro dan mikro yang tidak sesuai dengan kebutuhan secara terus menerus lama menyebabkan waktu yang pertumbuhannya terganggu yang diawali dengan beberapa gangguan hormon pertumbuhan.² Hormon utama yang mempengaruhi pertumbuhan pada masa kanak-kanak adalah hormon tiroid (T3), hormon pertumbuhan (Growth Hormon), Insulin-like growth factor (IGF) dan glucokortikoid.³ Salah satu zat gizi mikro yang mempengaruhi hormon pertumbuhan adalah yodium, hal ini sesuai dengan penelitian yang dilakukan pada anak usia sekolah (7-10 tahun) di Afrika yang menyatakan bahwa pemberian yodium yang cukup dapat meningkatkan IGF-I, IGFBP-3 dan memperbaiki pertumbuhan somatik. Asupan yodium yang cukup juga dapat memperbaiki fungsi hormon tiroid yang secara langsung mempengaruhi pertumbuhan efifiseal, maturasi tulang dan short stature.4

Yodium terdapat di dalam tubuh dalam jumlah yang sangat sedikit, yaitu sebanyak 15-23 mg, sebanyak 75% dari yodium ini ada di dalam kelenjar tiroid, yang digunakan untuk mensintesis hormon tiroksin, tetraiodotironin (T4) triiodotironin (T3). Hormon-hormon ini diperlukan untuk pertumbuhan normal, perkembangan fisik mental.⁵ Pemeriksaan yodium mengetahui jumlah yodium di dalam tubuh terdapat beberapa cara, salah satunya adalah dengan Ekskresi Yodium Urin (EYU), EYU merupakan cara yang akurat untuk menghitung kadar yodium di dalam tubuh karena hampir seluruh yodium yang di konsumsi (90%) diekskresikan melalui urin.^{6,7} EYU juga digunakan sebagai alat yang valid untuk mengetahui status yodium di dalam populasi.8 Kecukupan yodium tubuh dapat diketahui dari yodium yang masuk melalui makanan minuman, sebab tubuh manusia tidak dapat mensintesis yodium.6

Gangguan Akibat Kekurangan Yodium (GAKY) merupakan masalah kesehatan masyarakat di 84 negara maju dan berkembang, termasuk Indonesia. Faktor yang menyebabkan GAKY antara lain adalah wilayah geografis. Defisiensi yodium disuatu wilayah dapat terjadi karena tanah dan airnya sangat kekurangan yodium. Hal ini terjadi karena erosi, hujan lebat, banjir yang membawa yodium ke laut (banyak terdapat di daerah pegunungan). Sebagian besar jenis tanaman yang tumbuh di wilayah pegunungan merupakan zat goitrogenik sehingga dapat mengganggu metabolisme yodium di tubuh.9

Kecamatan Ngadirejo, Kabupaten Temanggung merupakan daerah pegunungan dan daerah endemik GAKY, hal tersebut dapat diketahui melalui mapping GAKY pada tahun 1982, dan sampai tahun 2004 masih menjadi daerah endemis GAKY berat. Kecamatan Semarang Utara, Kota Semarang tepatnya pada SD Bandarharjo 1 yang bertempat di pesisir pantai adalah merupakan Daerah pesisir pantai yang hanya berjarak <1km dari pantai, sehingga daerah ini sangat kaya dengan dengan seafood vang tinggi kandungan yodiumnya. ¹⁰ Daerah pesisir pantai yang seharusnya tidak ditemui GAKY, tetapi pada kenyataannya mulai ditemukan GAKY didaerah ini. Penelitian yang dilakukan di Kabupaten Pati mengemukakan bahwa daerah pesisir pantai mulai ditemukan GAKY lebih tinggi dibandingkan di pegunungan.¹¹

METODE

Penelitian ini dilakukan di SD Tegalrejo 1, Temanggung dan di SD Negeri Bandarharjo 1, Semarang pada bulan Maret 2016. Sampel merupakan siswa kelas IV SD Negeri Tegalrejo 1 dan SD Negeri Bandarharjo 1. Jenis penelitian ini yaitu *analitic observational* dengan desain *crosssectional*. Variabel bebas dalam penelitian ini adalah Kadar EYU dan tinggi badan anak SD. Variabel terikat dalam penelitian ini adalah daerah pegunungan, dan daerah pesisir pantai. Penelitian diawali dengan skrining data berdasarkan kriteria inklusi. Kriteria inklusi penelitian ini adalah Anak kelas 4 SD yang tercatat sebagai siswa SDN 1 Tegalrejo dan SDN 1 Bandarharjo.

Perhitungan jumlah sampel dihitung dengan menggunakan rumus analisis data tidak berpasangan. Berdasarkan penelitian sebelumnya diketahui simpangan baku adalah 0,517 dan X_1 - X_2 adalah 0,53, 12 setelah dihitung didapatkan besar sampel minimal untuk setiap kelompok sebesar 15 subjek. Untuk menghindari drop out ditambahkan 10 % untuk masing-masing kelompok sehingga menjadi 17 anak, sehingga total subjek minimal 34 orang.

Subyek yang bersedia kemudian diambil datanya. Data yang dikumpulkan adalah data karakteristik subyek, data antropometri, data asupan protein, seng, besi, dan data hasil pemeriksaan kadar EYU. Kadar Ekskresi Yodium Urin (EYU) diperoleh dari analisis di laboratorium Balai Litbang GAKY dengan metode spetrofotometri dengan sampel yang didapat dari urin yang dikeluarkan oleh sampel pada pagi hari. Data tinggi badan diperoleh dengan cara menggantungkan atau menempelkan *microtoise* di dinding yang rata dan siku terhadap lantai. Kemudian subyek berdiri tegak

dibawah *microtoise* dengan kaki rapat dan tumit, pantat, punggung, dan kepala menempel dinding. Data asupan protein, seng, dan besi diperoleh melalui metode recall 3x24jam yang kemudian diolah menggunakan *Nutrisurvey for Windows* 2005. Analisis statistik untuk melihat perbedaan variasi nilai menggunakan uji *independent t-test* dan *Mann-Whitney test*.

HASIL PENELITIAN Karakteristik Subyek

Subyek penelitian ini adalah 34 anak yang meliputi 17 anak SD di daerah pegunungan dan 17 anak SD di daerah pesisir pantai dengan rerata usia 10,4±0,9 tahun. Data jenis kelamin tersaji dalam tabel 1.

Tabel 1. Jenis Kelamin

Jenis Kelamin	Pegu	nungan	Pesisir pantai		
	Jumlah %		Jumlah	%	
Laki-laki	8	47,06	6	35,29	
Perempuan	9	52,94	11	64,71	

Kadar Ekskresi Yodium Urin (EYU)

Analisa perbedaan kadar Ekskresi Yodium Urin (EYU) pada Anak SD di daerah pegunungan dan di daerah pesisir pantai tersaji pada tabel 2.

Tabel 2. Perbedaan kadar EYU berdasarkan daerah

Daerah	N	Mean	Std. Deviation	р
Pegunungan	17	145,35	62,718	0,001a
Pesisir pantai	17	337,47	199,997	

^aindependen t-test

Tabel 2 menunjukkan hasil bahwa terdapat perbedaan kadar EYU pada anak SD di daerah pegunungan dengan pesisir pantai (p=0,001), dimana rerata EYU daerah pegunungan sebesar

 $145,4\pm62,7\mu g/L$ sedangkan daerah pesisir pantai sebesar $337,5\pm199,9\mu g/L$. Jika rerata tersebut dikategorikan hasilnya dapat dilihat pada tabel 3.

Tabel 3. Distribusi Kadar EYU

Ka	Kadar EYU		Pegunungan		Pesisir pantai		Total	
		n	%	N	%	n	%	
Defisiensi	(<100µg/L)	4	23,5%	1	5,9%	5	14,8%	
Optimal	$(100-200 \mu g/L)$	10	58,8%	5	29,4%	15	44,1%	
Lebih	$(>200 \mu g/L)$	3	17,7%	11	64,7%	14	41,1%	

Tabel 3 menunjukkan bahwa sebagian besar subyek yang berada di pegunungan mempunyai kadar EYU yang yang optimal (58,8%), dan lebih dari setengah total subyek yang berada di pesisir pantai memiliki kadar EYU yang berlebih (64.7%).

Tinggi Badan

Analisa perbedaan tinggi badan pada Anak SD di daerah pegunungan dan di pesisir pantai tersaji pada tabel 4.

Tabel 4. Perbedaan Tinggi Badan berdasarkan daerah

Daerah	N	Minimal	Maksimal	Median	p
Pegunungan	17	117	129,5	126,7	0,0001 ^b
Pesisir pantai	17	131	150	137	

bmann whitney test

Tabel 4 menunjukkan hasil bahwa ada perbedaan tinggi badan anak sekolah dasar antara daerah pegunungan dengan daerah pesisir pantai (p=0,0001), dimana median tinggi badan anak daerah pegunungan sebesar 126,7cm, sedangkan median anak sekolah dasar di pesisir pantai sebesar 137 cm. Status gizi anak yang dinilai dengan

persentil WHO-NCHS didapatkan bahwa pada anak daerah pegunungan terdapat 16 anak dengan kategori pendek sedangkan pada anak di pesisir pantai terdapat 3 anak dengan kategori pendek.

Asupan Makanan

Tabel 5 menggambarkan kecukupan asupan besi, seng, dan yodium. Sebagian besar subjek di

pegunungan memiliki rata-rata asupan seng dan yodium yang lebih kecil dibandingkan dengan di

pesisir pantai, tetapi untuk asupan zat besi lebih tinggi di daerah pegunungan.

Tabel 5. Asupan Makanan Anak

Karakteristik	Pegun	ungan	Pesisir pantai		
	Mean	St. Dev	Mean	St. Dev	
Besi	5,5	1,65	5,18	1,20	
Seng	4,13	0,95	5,57	1,25	
Yodium	57,26	24,86	84,25	43,20	

Faktor Herediter

Faktor herediter yang mempengaruhi tinggi badan anak meliputi data panjang badan lahir, tinggi badan ibu, dan tinggi badan ayah yang tersaji dalam tabel 6.

Tabel 6. Panjang badan lahir, tinggi badan ibu, dan tinggi badan ayah

Karakteristik		Pegunungan			Pesisir pantai		
	Median	Mean	Std. Dev	Median	Mean	Std. Dev	
Panjang lahir	45	45,65	4,27	50	49,82	1,98	
Tinggi badan ibu	147	148,32	11,61	158	158,29	5,89	
Tinggi badan ayah	155	156,71	6,72	170	170,11	5,24	

Tabel 6 menunjukkan bahwa rata-rata mean dan median di daerah pesisir pantai untuk panjang badan, tinggi badan ibu, dan tinggi badan ayah lebih tinggi dibandingkan dengan di pegunungan.

PEMBAHASAN

Penelitian didapatkan hasil bahwa terdapat perbedaan kadar EYU pada anak SD di daerah pegunungan dengan daerah pesisir pantai dengan rerata EYU di daerah pegunungan sebesar 145,35µg/L dan di daerah pesisir pantai sebesar 337,5µg/L. Rerata tersebut serasi dengan penelitian yang dilakukan di Jawa Tengah pada tahun 2013 bahwa median EYU pada daerah pesisir pantai sebesar 237µg/L sedangkan pada daerah pegunungan sebesar 201µg/L¹³. Hasil tersebut sesuai dengan penelitian di Nepal yang dilakukan pada anak usia 6-11 tahun yang menyatakan bahwa ada perbedaan EYU antara anak yang tinggal di daerah pesisir pantai, dataran rendah, dataran tinggi, dan pegunungan¹⁴, tetapi hasil tersebut tidak sesuai dengan penelitian di Italia yang dilakukan pada anak yang berumur 11-15 tahun yang menyatakan bahwa tidak ada perbedaan EYU antara anak yang tinggal di daerah kota dengan daerah pegunungan. 15

Defisiensi yodium berkaitan erat dengan faktor geografis, seperti daerah pegunungan, yang lapisan humus tanah sebagai tempat menetapnya yodium sudah tidak ada, akibat erosi tanah secara terus menerus, terkikis oleh banjir, lahar, hujan tropik pada lahan miring, tanah berkapur, dan yodium larut dalam air yang terbawa sampai ke muara sungai dan laut. Beberapa kondisi geografis tersebut, menyebabkan keadaan tanah, air dan bahan pangan kurang mengandung yodium. 16 Suatu

wilayah yang mempunyai karakteristik yang menyebabkan berkurangnya kandungan yodium dalam tanah ini disebut sebagai daerah endemis GAKY. Hasil ini sesuai dengan penelitian yang mengukur kandungan yodium pada tanah di daerah pegunungan karena adanya cleaning/washing yang terjadi di dataran yang lebih tinggi lagi, yang menyebabkan rendahnya persediaan yodium pada area dibawahnya, salah satu daerah yang mengalami kurangnya yodium pada tanah adalah pegunungan Himalaya dan Alpena.¹⁷ Daerah pegunungan biasanya miskin akan yodium karena lapisan paling atas dari tanah yang mengandung yodium terkikis dari waktu ke waktu, sedangkan tanah di pesisir pantai kemungkinan terkikis lebih kecil sehingga diduga kandungan yodium masih normal. 18,19

Kemungkinan penyebab adanya subyek penelitian yang memiliki kadar EYU rendah adalah kurangnya asupan yodium baik dari makanan ataupun penggunaan garam tidak beryodium. Daerah pegunungan sudah tidak banyak ditemui anak dengan GAKY, hal ini diketahui melalui hasil pegunungan pengukuran **EYU** di menunjukkan hanya 23,5% yang mengalami defisiensi yodium dan selebihnya normal. Hal ini dimungkinkan karena distribusi makanan di daerah pegunungan dan di daerah pesisir pantai sudah tidak ada masalah. Orang di pegunungan sudah bisa semua mengakses hampir makanan yang dikonsumsi orang di pesisir pantai seperti ikan, rumput laut, garam beryodium, dan sumber makanan yang mengandung yodium yang lainnya. Selain defisiensi yodium, kelebihan yodium juga perlu menjadi perhatian, pada anak SD di daerah pesisir pantai terdapat 11 anak yang mengalami kelebihan yodium di dalam urin. Kelebihan yodium ini juga dapat berakibat buruk terhadap kesehatan yaitu terjadinya tirotoksikosis. Pada penelitian EYU pada tahun 2003 pada tingkat kabupaten kota, ditemukan banyak yang mempunyai nilai median EYU diatas normal yaitu 66,8 persen dibandingkan penelitian sebelumnya pada tahun 1998 yang hanya 24,4 persen. Sebagian penduduk yang memiliki status yodium yang berlebihan dapat menimbulkan gangguan kesehatan dan mempengaruhi aktivitas kerja sehari-hari.²⁰

Faktor lain yang dapat membantu metabolisme yodium adalah tingkat zat besi dan seng, asupan seng berpengaruh dengan kadar EYU pada anak dengan p=0,007. Tetapi untuk asupan besi di daerah pegunungan lebih tinggi yaitu 5,5±1,65 mcg dibandingkan dengan daerah pesisir pantai 5,1±1,2 mcg. Asupan zat besi pada daerah pegunungan lebih tinggi dibandingkan pada daerah pesisir pantai dikarenakan pada anak SD di pegunungan secara rutin mengkonsumsi sayuran. Pada daerah pegunungan juga banyak terdapat zat goitrogen. Goitrogen biasa terdapat di dalam tumbuh-tumbuhan yang tergolong kedalam genus brassica, yaitu seperti kol, lobak, taoge, brokoli, dan sejumlah makanan pokok seperti singkong, jagung, dan buncis. Zat goitrogen pada sayuran dapat menghambat metabolisme pada yodium.²¹

Tingginya EYU karena ada hubungan dengan tinggi badan anak, dimana pada penelitian didapatkan bahwa tinggi anak di pesisir pantai lebih tinggi dibandingkan tinggi badan anak pegunungan. Hasil ini sesuai dengan penelitian yang dilakukan di Tabanan pada Anak SMP bahwa terdapat lebih banyak anak pendek (TB/U) pada daerah yang endemik GAKY dibandingkan dengan anak yang tinggal di daerah non endemik GAKY.²² Penelitian anak SD di Kabupaten Dairi Sumatera Utara menunjukkan bahwa pertumbuhan tinggi badan di daerah endemik GAKY lebih rendah dibandingkan dengan di daerah non endemik GAKY, ²³ sedangkan penelitian yang dilakukan pada anak SD di Kabupaten Polewali tidak ada perbedaan yang signifikan (BB/TB) antara anak SD di pegunungan dengan pesisir pantai.²⁴

Faktor hereditas juga berpengaruh terhadap tinggi badan anak. Tinggi badan ibu berhubungan dengan TB anak dengan p=0,028, dan TB ayah juga berhubungan secara signifikan dengan TB anak dengan p=0,0001. Hasil tersebut sesuai dengan penelitian pada anak baru msuk sekolah SD di Chile yang mengidentifikasi faktor risiko defisit pertumbuhan pada anak yang orang tuanya bertubuh pendek dibanding dengan anak-anak yang orang tuanya bertubuh tidak pendek di daerah tertinggal.²⁵

Panjang badan lahir juga berpengaruh terhadap tinggi badan sekarang dengan p=0,0001. Hasil ini sesuai dengan penelitian pada anak SD di Palangkaraya yang menunjukkan panjang badan lahir berhubungan dengan Tinggi Badan Anak Baru Sekolah pada kondisi panjang badan anak waktu lahir yang pendek dan tidak pendek. Anak yang pendek waktu lahir akan berisiko pendek pula pada usia masuk sekolah dan faktor yang berhubungan dengan kejadian pendek pada anak baru masuk sekolah yang paling dominan dan berpengaruh adalah tingkat pendidikan ibu.²⁶

SIMPULAN

Terdapat perbedaan Ekskresi Yodium Urin (EYU) dan tinggi badan yang signifikan antara anak SD di Kecamatan Ngadirejo Kabupaten Temanggung dengan Kecamatan Semarang Utara Kota Semarang.

SARAN

Perlu adanya penelitian lanjutan tentang faktor-faktor yang berhubungan dengan ketersediaan yodium di daerah pegunungan dan daerah pesisir pantai.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada subyek dan responden, kepada teman-teman dan seluruh pihak yang telah membantu dalam pengambilan data hingga penyusunan Karya Tulis Ilmiah ini. Terima kasih penulis sampaikan pula kepada dosen pembimbing dan para reviewer atas masukan, kritik, dan saran yang diberikan.

DAFTAR PUSTAKA

- Maskar D.H. Assessment of illegal food additives intake from street food among primary school children in selected area of Jakarta. Thesis. SEAMEO-TROPMED RCCN University of Indonesia. 2004
- Supardin N, Hadju V, Sirajuddin S. Hubungan Asupan Zat Gizi dengan Status Hemoglobin pada Anak Sekolah Dasar di Wilayah Pesisir Kota Makassar Tahun 2013.
- 3. Clayton, P.E., Leena Patel . Normal and disorder growth. In: Brook CGD, Clayton PE, Brown RS,eds,Clinical pediatric endocrinology, 5th. London: Blackwell Science. 2005
- 4. Zimmerman,M. Global progress in universal salt yodium. In: Yodium ICCID. Publ Health Nutr (in press). 2007
- 5. Almatsier, S. Prinsip Dasar Ilmu Gizi. Jakarta : Penerbit PT Gramedia Pustaka Utama. 2009
- Gatie AL. Validasi Total Goitre Rate (TGR) Berdasar Palpasi terhadap Ultrasonografi (USG) Tiroid Serta Kandungan Yodium Garam dan Air di

- Kecamatan Sirampog Kabupaten Brebes (Studi Pada Anak Sekolah Dasar Tahun 2006) TGR Validation Based on Palpation to Tyroid USG and Iodine Content Salt and Water in Sirampog District, Brebes Regency (A Study on Schoolchildren In 2006) (Doctoral dissertation, Program Pascasarjana Universitas Diponegoro).
- 7. Mazzarella C, Terracciano D, Di Carlo A, Macchia PE, Consiglio E, Macchia V, Mariano A. Iodine status assessment in Campania (Italy) as determined by urinary iodine excretion. Nutrition. 2009 Sep 30;25(9):926-9
- 8. World Health Organization. Urinary iodine concentrations for determining iodine status in populations.
- 9. Chandra AK, Singh LH, Tripathy S, Debnath A, Khanam J. Iodine nutritional status of children in North East India. The Indian Journal of Pediatrics. 2006 Sep 1;73(9):795-8.
- Listiyana D. Subtitusi Tepung Rumput Laut (Eucheuma Cottonii) pada Pembuatan Ekado sebagai Alternatif Makanan Tinggi Yodium pada Anak Sekolah (Doctoral dissertation, Universitas Negeri Semarang). 2014
- Sulchan M. Goiter in The Coastal Areas (Case Study In Pati Regency): An Ecological Nutrition Problem?. Jurnal GAKY Indonesia. 2007;6(1):17-22
- 12. Mabruroh F. Perbedaan Tinggi Badan Anak Kelas 4-5 yang Mengkonsumsi Iodium Cukup dan Kurang di Sekolah Dasar Negeri Lagoa 06 Jakarta Utara. Unversitas Indonusa Esa Unggul. 2011
- 13. Dinkes Jateng. Buku Profil Kesehatan Provinsi Jawa Tengah Tahun 2012. Semarang: Dinas Kesehatan Provinsi Jawa Tengah. 2013.
- 14. Gelal B, Aryal M, Lal Das BK, Bhatta B, Lamsal M, Baral N. Assessment of iodine nutrition status among school age children of Nepal by urinary iodine assay. Southeast Asian Journal of Tropical Medicine and Public Health. 2009 May 1;40(3):538.
- 15. Saggiorato E, Arecco F, Mussa A, Sacerdote C, Rossetto R, Origlia C, Germano L, Deandreis D, Orlandi F, Piedmont Goiter Study Committee. Goiter prevalence and urinary iodine status in urban and rural/mountain areas of Piedmont region. Journal of endocrinological investigation. 2006 Jan 1:29(1):67-73.
- 16. Hakim AL. Kesesuaian Kadar Yodium Garam Dapur, Air dan Urine Yodium Excretion (UIE) di Daerah Endemis GAKY Berat (Doctoral dissertation, Program Studi Ilmu Gizi). 2009
- 17. Fuge, Ron. Soils and Iodine Deficiency: Essentials of Medical Geology, Impacts of the Natural Environment on Public Health. Ed. Selinus, Aloway. New York: Elsevier Inc; 2005.
- Saidin, S. Hubungan Keadaan Geografi dan Lingkungan dengan Gangguan Akibat Kurang Yodium (GAKY). Media Litbang Kesehatan Volume XIX (2). 2009

- 19. Smyth D, Johnson CC. Distribution of iodine in soils of Northern Ireland. Geochemistry: Exploration, Environment, Analysis. 2011 Feb 1;11(1):25-39.
- 20. Ginsberg, Jody. Diagnosis and management of Graves' disease. Canadian Medical Association Journal. 2003;16:575–85.
- Wahyu Ningtyias F, Husain Asdie A. Hubungan Konsumsi Goitrogenik sianida dengan kadar tiosianat urin di Daerah endemik GAKY Kab. Jember. 2016
- 22. Trisnawati IG. Tingkat Pertumbuhan Tinggi Badan Dan Status Gizi Siswa SMP di Daerah Endemik dan Non Endemik GAKI di Kabupaten Tabanan. Virgin: Jurnal Ilmiah Kesehatan Dan Sains. 2016 Mar 29;1(1).
- 23. Aritonang, E. dan Evinaria. Pola Konsumsi Pangan, Hubungannya Dengan Status Gizi Dan Prestasi Belajar Pada Pelajar SD Di Daerah Endemik GAKI Desa Kuta Dame Kecamatan Kerajaan Kabupaten Dairi Propinsi Sumatera Utara. Fakultas Kesehatan Masyarakat Universitas Sumatera Utara. 2005
- 24. Ali AR. Perbedaan Kadar Hemoglobin, Status Gizi Dan Prestasi Belajar Anak Sd Wilayah Pantai Dan Pegunungan Di Kab. Polewali Mandar Tahun Ajaran 2005/2006. 2006
- Amigo, Hugo, Bustos, Patricia, Leone, Claudio & Radrigan, M.E. Growth Deficit in Chilean School Children. American Sosiety for Nutritional Sciences, 2000, 251-253.
- Norliani, Sudargo, T., Budiningsari, D. R., Tingkat Sosial Ekonomi, Tinggi Badan Orang Tua dan Panjang Badan Lahir dengan Tinggi Badan Anak Baru Masuk Sekolah. BKM. (2005); XXI: 04: Page. 133-139