

Journal of Nutrition College, Volume 4, Nomor 2, Tahun 2015, 486-491

Online di : http://ejournal-s1.undip.ac.id/index.php/jnc

PENGARUH PEMBERIAN SARI BUAH BELIMBING WULUH (AVERRHOA BILIMBI L.) TERHADAP KADAR GLUKOSA DARAH TIKUS SPRAGUE DAWLEY

Rikhana Dwi Rahmawati, Aryu Candra K *)

Program Studi Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro Jl.Dr.Sutomo No.18, Semarang, Telp (024) 8453708, Email: gizifk@undip.ac.id

ABSTRACT

Background: Hyperglycemia is a condition that can cause a variety of both macro and microvascular complication. Insulin resistence is one of the underline factors of hyperglycemia. Flavonoid and vitamin C are antioxidants which found in plants and fruits, are used as hyperglycemic medicine. For instance, one of fruits that contain high flavonoid and vitamin C is bilimbi.

Method: This research is true experimental design with pre-post test randomized controlled group design. The subject consisted of 21 Sprague Dawley rats ages 2-3 month were divided into 3 groups. Positive control group and treatment group were given high feed fructose and fat diet for 15 days. After that, treatment group was given bilimbi juice 2 mL/200g weight for 14 days. The blood glucose levels was analyzed used glucose oxidase (GOD PAP). Normality of the data was tested by Shapiro wilk then analyzed with paired t test.

Results: Feeding high-fructose and fat diet for 15 days can increase blood glucose levels on both positive control and treatment groups significantly (p=0,000). The increasing number of blood glucose levels after fed with high fructose and fat in the positive and treatment group were 77,72±4,63 and 76,26±5,77 mg/dL. Being given bilimbi juice for 14 days in treatment group may lower blood glucose levels in rat significantly (p=0,000). The number of decrease is -36,49±5,46 mg/dL.

Conclusion: Bilimbi juice dosage 2ml/200g weight for 14 days can lower blood glucose levels significantly.

Keywords: bilimbi juice, Averrhoa bilimbi L., blood glucose level, hyperglicemia, fructose, fat

ABSTRAK

Latar Belakang: Hiperglikemia merupakan kondisi yang dapat menyebabkan berbagai komplikasi baik makro maupun mikrovaskuler. Resistensi insulin merupakan salah satu faktor yang mendasari terjadinya hiperglikemia. Senyawa antioksidan berupa flavonoid dan vitamin C yang terdapat pada tanaman dan buah-buahan dapat digunakan sebagai obat antihiperglikemia. Buah yang mengandung tinggi flavonoid dan vitamin C adalah belimbing wuluh.

Metode: Penelitian ini merupakan penelitian true experimental dengan rancangan pre-post test with randomized controlled group design. Subyek penelitian terdiri dari 21 ekor tikus Sprague Dawley jantan berusia 2-3 bulan yang dibagi kedalam 3 kelompok. Kelompok kontrol positif dan perlakuan diberikan pakan tinggi fruktosa dan lemak selama 15 hari kemudian kelompok perlakuan diberikan sari buah belimbing wuluh sebanyak 2 mL/200gBB selama 14 hari. Analisis kadar glukosa darah menggunakan metode glukosa oksidase (GOD PAP). Normalitas data diuji dengan Shapiro Wilk kemudian dianalaisis dengan uji paired t test.

Hasil: Pemberian pakan tinggi fruktosa dan lemak selama 15 hari dapat meningkatkan kadar glukosa darah secara signifikan baik kelompok kontrol positif maupun perlakuan (p=0,000). Rerata peningkatan kadar glukosa darah setelah diberi pakan tinggi fruktosa dan lemak pada kelompok kontrol positif dan perlakuan adalah 77,72±4,63 dan 76,26±5,77 mg/dL. Pemberian sari buah belimbing wuluh selama 14 hari pada kelompok perlakuan dapat menurunkan kadar glukosa darah pada tikus secara signifikan (p=0,000) dengan rerata penurunan sebesar - 36,49±5,46 mg/dL.

Kesimpulan: Pemberian sari buah belimbing wuluh dosis 2mL/200gBB selama 14 hari dapat menurunkan kadar glukosa darah tikus hiperglikemia secara signifikan.

Kata kunci: sari belimbing wuluh, Averrhoa bilimbi L., kadar glukosa darah, hiperglikemia, fruktosa, lemak

PENDAHULUAN

Glukosa merupakan sumber energi utama yang dibutuhkan oleh tubuh manusia. Kadar glukosa darah normal adalah terjadinya keseimbangan antara glukosa yang masuk dari usus ke dalam darah dan berpindahnya glukosa dari darah ke dalam jaringan tubuh. Kadar glukosa darah yang berada diatas nilai normal disebut dengan hiperglikemia. Hiperglikemia merupakan

kondisi yang dapat menyebabkan berbagai komplikasi baik makro maupun mikrovaskuler yang dapat mengakibatkan kerusakan organ tubuh.^{2,3} Resistensi insulin adalah salah satu faktor yang mendasari terjadinya hiperglikemia kronis yang juga merupakan risiko penyakit diabetes mellitus dan sindrom metabolik.⁴ Kadar glukosa darah puasa yang normal berkisar antara 50 – 109 mg/dL.^{3,5}

Pemberian fruktosa dan juga margarin dapat meningkatkan kadar glukosa darah. Penelitian sebelumnya menunjukkan bahwa pemberian fruktosa sebanyak 20 ml selama 6 minggu dapat menyebabkan tikus mengalami diabetes mellitus (> 135 mg/dL).⁶ Pemberian margarin yang telah dicairkan juga diketahui dapat meningkatkan kadar glukosa darah.⁷ Hal ini dikarenakan asupan asam lemak trans yang tinggi dapat menyebabkan inflamasi sistemik yang dapat mempengaruhi jaringan adiposa sehingga menjadi salah satu faktor risiko terjadinya penyakit diabetes mellitus tipe 2.89 Konsumsi makanan tinggi lemak trans dilaporkan dapat meyebabkan berkurangnya sensitivitas kadar insulin untuk mengontrol kadar glukosa darah.⁷

Saat ini sudah berkembang berbagai penelitian mengenai pemanfaatan tanaman dan buah-buahan sebagai obat antihiperglikemia. Hal ini dikarenakan semakin banyaknya masyarakat yang menginginkan pengobatan secara alami serta pemanfaatan berbagai macam jenis tanaman serta buah-buahan yang ada di sekitar. Senyawa yang terdapat pada tanaman dan buah-buahan yang sering digunakan sebagai penurun kadar glukosa darah adalah senyawa flavonoid dan juga vitamin C. memiliki kemampuan Flavonoid untuk meregenerasi dan merangsang pelepasan insulin pada sel beta pankreas. 10 Sedangkan vitamin C berperan dalam mengurangi toksisitas glukosa yang berkontribusi mencegah terjadinya penurunan sel β dan kadar insulin di dalam tubuh.¹¹

Belimbing wuluh merupakan salah satu jenis buah-buahan yang banyak mengandung flavonoid, saponin, dan vitamin C.¹² Belimbing wuluh banyak tumbuh dan berkembang di Indonesia. Buah ini dapat berbuah sepanjang musim sehingga sangat mudah untuk didapatkan. Keunggulan lain dari buah ini adalah harganya yang murah bahkan tidak perlu membeli karena buah ini sangat mudah untuk dijumpai.

Peneliti tertarik untuk menggunakan buah belimbing wuluh sebagai intervensi, selain mempunyai kandungan flavonoid dan vitamin C, tanaman ini juga banyak tumbuh dan berkembang di Indonesia, pemanfaatan buah belimbing wuluh selama ini belum banyak dilakukan. Buah belimbing wuluh selama ini hanya digunakan sebagai campuran dalam pembuatan sayur saja. Sehingga selama ini banyak buah belimbing wuluh yang dibiarkan hingga masak dan jatuh terbuang begitu saja.

Penelitian dari Armenia menyatakan bahwa pemberian air perasan belimbing wuluh dengan dosis 30ml/kgBB dapat menurunkan kadar glukosa darah pada mencit dalam waktu 5 hari. ¹³ Apabila dikonversikan ke dalam dosis manusia, maka manusia harus mengkonsumsi air perasan belimbing wuluh sebanyak 235,2 mL atau \pm 1 gelas belimbing. Untuk itu dibutuhkan \pm 18 buah belimbing wuluh setiap hari. Hal itu dianggap masih terlalu banyak untuk dikonsumsi sehari-hari.

Terdapat beberapa kasus pada manusia yang mengkonsumsi 15 – 20 buah belimbing wuluh setiap harinya diketahui dapat terjadi penumpukan kristal oksalat.¹⁴ Penelitian dari Armenia juga menyebutkan bahwa konsumsi belimbing wuluh iangka waktu dalam yang lama mengakibatkan terjadinya kerusakan ginjal. Hal ini dikarenakan adanya kandungan oksalat pada buah wuluh yang dapat menyebabkan belimbing pada ginjal teriadinya kerusakan apabila dikonsumsi secara berlebihan.

Penelitian kali ini akan menguji efek penurunan glukosa darah sari belimbing wuluh pada tikus dengan dosis yang lebih rendah dan sesuai dengan konsumsi manusia sehari-hari agar tidak menimbulkan efek samping.

METODE PENELITIAN

Penelitian ini merupakan penelitian true experimental dengan rancangan pre-post test with randomized control group design. Variabel bebas (independent variabel) dalam penelitian ini adalah pemberian sari buah belimbing wuluh yang diberikan dengan dosis 2 ml/200gBB tikus. Variabel terikat (dependent variabel) dalam penelitian ini adalah kadar glukosa darah setelah pemberian sari buah belimbing wuluh. Variabel terkontrol (control variable) adalah galur tikus, umur, jenis kelamin, pakan, kandang, dan sistem perkandangan hewan coba. Pelaksanaan penelitian ini telah mendapatkan persetujuan dari Komite Etik Penelitian Kesehatan **Fakultas** Kedokteran Universitas Diponegoro dengan terbitnya Ethical Clearance No. 434/EC/FK-RSDK/2015. Penelitian ini dilakukan di Laboratorium Pangan dan Gizi Universitas Gajah Mada Yogyakarta. Penelitian dilakukan dalam kurun waktu 1 bulan.

Belimbing wuluh (Averrhoa bilimbi L.) setelah dipanen, dipisahkan dari daun yang masih menempel kemudian dicuci hingga bersih dengan air mengalir. Sari buah belimbing wuluh diperoleh dengan cara menghaluskan buah belimbing wuluh tersebut dengan menggunakan juicer yang kemudian disaring dan dipisahkan dari ampasnya. Sari buah belimbing wuluh yang sudah didapatkan tidak ditambahkan dengan air kemudian disimpan kedalam refrigerator.

Perhitungan sampel minimal hewan coba menggunakan rumus Federeer yaitu sebanyak 6 ekor setiap kelompok, untuk mengantisipasi terjadinya *drop out* maka jumlah sampel tiap kelompok menjadi 7 ekor setiap kelompok. Hewan coba yang digunakan adalah tikus jantan galur *Sprague dawley* dengan usia 2-3 bulan, sehat, tingkah laku dan aktivitas normal. Tikus akan masuk kedalam kriteria eksklusi apabila mati selama masa adaptasi dan perlakuan, mengalami penurunan berat badan sebesar 10% dari awal, dan mengalami perubahan perilaku (menolak makan dan lemas).

Subyek dalam penelitian kali ini adalah 21 ekor tikus. Masing-masing tikus akan ditempatkan pada kandang individu yang telah dibersihkan. Suhu ruangan berkisar antara 25-28° C dengan sirkulasi pencahayaan 12 jam. Selama masa adaptasi, tikus akan diberikan pakan standar sebanyak 20g/hari. Sebanyak dua puluh satu ekor tikus dibagi menjadi 3 kelompok secara acak, yaitu kelompok kontrol negatif (K-), kelompok kontrol positif (K+), dan kelompok perlakuan (P).

Ketiga kelompok tersebut diadaptasi selama 3 hari. Setelah melalui masa adaptasi, tikustikus tersebut akan diambil sampel darahnya guna pemeriksaan kadar glukosa darah awal. Kelompok kontrol positif dan kelompok perlakuan setelah malalui masa aklimasi akan diberikan pakan standar, air minum *ad libitum*, larutan fruktosa 66%, dan margarin yang telah dipanaskan sebanyak 1,7 gram selama 15 hari. Sedangkan untuk kelompok kontrol negatif akan diberikan pakan standar dan air minum *ad libitum*. Setelah itu dilakukan pengambilan darah untuk analisis kadar glukosa darah sebelum perlakuan. *Eksperimen* dilakukan pada kelompok perlakuan dengan cara pemberian

sari buah belimbing wuluh (*Averrhoa bilimbi L.*) dengan dosis 2 mL/200g BB pada tikus dengan cara sonde 1 kali/hari selama 14 hari. Sedangkan untuk kelompok kontrol negatif dan kontrol positif hanya diberikan pakan standart dan air minum. Setelah 14 hari, tikus akan diambil darahnya kembali untuk dianalisis kadar glukosa darah setelah perlakuan. Pengambilan darah dilakukan pada *plexus retro orbitalis* setelah berpuasa 12 jam. Kadar glukosa darah dianalisis dengan menggunakan metode glukosa oksidase (GOD PAP).

Data yang diperoleh akan diuji normalitasnya dengan menggunakan uji *Shapiro-Wilk* karena n<50. Apabila didapatkan data terdistribusi normal maka akan dilanjutkan dengan uji *paired T test* sedangkan apabila data berdistribusi tidak normal maka akan diuji dengan uji Wilcoxon.

HASIL PENELITIAN

Penelitian mengenai pengaruh pemberian sari buah belimbing wuluh (*Averrhoa bilimbi L*.) terhadap kadar glukosa darah pada tikus *Sprague dawley* jantan yang mengalami hiperglikemia telah dilakukan. Sebanyak dua puluh satu ekor tikus telah diambil sampel darah untk dianalisis kadar glukosa darah. Data awal, *pre* dan *post* yang telah didapat diuji normalitasnya menggunakan uji *Shapiro-wilk* karena sampel kurang dari 50. Data hasil uji normalitas *Shapiro-wilk* pada tiap kelompok berdistribusi normal (p>0,05).

Perubahan Kadar Glukosa Darah Sebelum dan Sesudah Pemberian Pakan Tinggi Fruktosa dan Lemak

Tabel 1. Rata-Rata Kadar Glukosa Darah Sebelum dan Sesudah Pemberian Pakan Tinggi Fruktosa dan

Leman							
Kelompok	n	Sebelum ^a (mg/dL±SD)	Sesudah ^b (mg/dL±SD)	Δ (mg/dL±SD)	p		
K(-)	7	57,14±2,7	$57,80\pm2,67$	$0,65\pm0,29$	0,001*		
K(+)	7	57,77±3,57	135,50±3,19	$77,72\pm4,63$	0,000*		
P	7	$56,85\pm3,32$	133,11±3,42	76,26±5,77	0,000*		

^a = Kadar glukosa darah sebelum diberikan pakan tinggi fruktosa dan lemak

Tabel diatas menunjukkan bahwa terdapat peningkatan kadar glukosa darah pada masingmasing kelompok. Namun apabila dilihat dari nilai rerata peningkatan kadar glukosa darah, maka rerata peningkatan kadar glukosa darah yang besar terdapat pada kelompok kontrol positif dan kelompok perlakuan dengan nilai rerata peningkatan sebesar 77,72 mg/dL dan 76,26 mg/dL. Dengan demikian dapat disimpulkan bahwa pemberian pakan tinggi fruktosa dan lemak dapat meningkatkan kadar glukosa darah tikus.

b = Kadar glukosa darah sesudah diberikan pakan tinggi fruktosa dan lemak

^{*=} Signifikan

Perubahan Kadar Glukosa Darah Sebelum dan Sesudah Pemberian Sari Buah Belimbing Wuluh

Tabel 2. Rata-Rata Kadar Glukosa Darah Sebelum dan Sesudah Pemberian Sari Buah Belimbing

YY UIUII							
Kelompok	n	Sebelum ^c (mg/dL±SD)	Sesudah ^d (mg/dL±SD)	Δ (mg/dL±SD)	p		
K(-)	7	57,80±2,67	58,06±2,81	0,26±0,34	0,091		
K(+)	7	$135,50\pm3,19$	$136,08\pm3,05$	$0,58\pm0,27$	0,001*		
P	7	$133,11\pm3,42$	96,61±3,98	$-36,49\pm5,46$	0,000*		

c= Kadar glukosa darah sebelum diberikan sari buah belimbing wuluh

Tabel diatas menunjukkan bahwa pada kelompok kontrol negatif tidak terdapat perbedaan kadar glukosa darah yang signifikan. Sedangkan pada kelompok kontrol positif dan perlakuan terdapat perbedaan kadar glukosa darah yang signifikan yaitu p=0,001 dan p=0,000. Setelah dilihat dari tabel perubahan penurunan kadar glukosa darah, kelompok perlakuan yang diberikan sari buah belimbing wuluh mengalami penurunan yang lebih besar dengan rerata penurunan sebesar 36,49 mg/dL. Maka dapat disimpulkan bahwa pada kelompok perlakuan terdapat penurunan kadar glukosa darah yang lebih signifikan dibandingkan dengan kelompok kontrol positif.

PEMBAHASAN

Penelitian ini menggunakan sampel sebanyak 21 ekor tikus jantan *Sprague dawley* yang dibagi menjadi 3 kelompok secara random, yaitu kelompok kontrol negatif (K–), kelompok kontrol positif (K+), dan kelompok perlakuan (P). Terdapat peningkatan kadar glukosa darah yang signifikan pada masing-masing kelompok. Rerata kadar glukosa darah setelah pemberian fruktosa pada kelompok kontrol 57,80±2,67 mg/dL, kelompok kontrol positif 135,50±3,19 mg/dL, dan kelompok perlakuan 133,11±3,32 mg/dL.

Kelompok kontrol positif dan kelompok perlakuan mengalami peningkatan kadar glukosa darah yang signifikan (p=0,000) setelah diberikan perlakuan pakan tinggi fruktosa dan lemak. Hal ini dikarenakan asupan tinggi fruktosa berkontribusi terhadap terjadinya kegagalan toleransi glukosa, hiperinsulinemia. 15 resisitensi insulin, dan Pemberian fruktosa secara terus menerus masuk ke glikolisis vang dapat menyebabkan jalur peningkatan produksi trigliserida. Pemberian dalam jumlah besar dapat fruktosa yang menyebabkan simulasi lipogenesi secara cepat dan akumulasi trigliserida. Sehingga akan berakibat pada berkurangnya sensitivitas insulin dan resistensi insulin hepatik. ^{16, 17}

Fruktosa di metabolisme di hati melalui 2 tahap yang sangat teregulasi dalam glikolisis, dikatalisasi oleh glukokinase/heksokinase dan fosfofruktokinase, keduanya dapat dihambat dengan peningkatan konsentrasi produk sampingannya. Namun sebaliknya, fruktosa memasuki jalur yang tidak diregulasi yang kemudian dimetabolisme menjadi fruktosa-1-fosfat fruktokinase atau ketoheksokinase.¹⁷ Fruktokinase tidak memiliki umpan balik negatif. Fruktosa mengalami fosforilasi oleh enzim ketoheksokinase (KHK) yang menghabiskan ATP sehingga dibentuk asam urat yang menimbulkan efek sistemik dengan cara menurunkan nitrit oksida (NO) sehingga teriadi vasokonstriksi dan penurunan serapan glukosa oleh otot skeletal. Selain terjadinya efek sistemik, asam urat juga menimbulkan efek selluler terhadap sel adiposit dengan cara oksidatif dan penurunan peningkatan stres adiponektin yang dapat menyebabkan terjadinya penurunan oksidasi lipid hepatik. Terjadinya efek sistemik dan efek seluler asam urat tersebut akan memicu timbulnya resistensi insulin. 17,18,19,20

Pemberian margarin juga dapat memicu peningkatan kadar glukosa darah. Margarin mengandung asam lemak trans yang dapat menyebabkan terjadinya peningkatan kadar glukosa darah. Mekanisme peningkatan kadar glukosa darah dengan peningkatan distribusi asam lemak di hati meningkatkan vang dapat glukoneogenesis. Akumulasi trigliserida pada hati semakin lama akan menyebabkan terjadinya resistensi insulin sehingga terjadi peningkatan kadar glukosa darah.^{7,16} Hal ini juga sesuai dengan penelitian sebelumnya yang menyebutkan bahwa peberian margarin dapat meningkatkan kadar glukosa darah puasa tikus.⁷

Hasil pada tabel 1 menunjukkan adanya peningkatan kadar glukosa darah pada tikus kontrol

d= Kadar glukosa darah setelah diberikan sari buah belimbing wuluh

^{*=} Signifikan

negatif yang tidak diberikan pakan tinggi fruktosa maupun lemak. Kenaikan tersebut kemungkinan disebabkan karena faktor usia tikus tersebut. Tikus mulai mengalami peningkatan kadar glukosa darah setelah memasuki usia 12 minggu.²¹ Peningkatan usia akan berpengaruh terhadap fungsi organ, salah satunya adalah sel beta pankreas. Sel beta pankreas semakin lama akan mengalami degradasi sehingga dapat menyebabkan penurunan hormon insulin yang dihasilkan. Hal tersebut akan berpengaruh terhadap peningkatan kadar glukosa darah.²²

Tikus diberi perlakuan dengan pemberian sari buah belimbing wuluh (*Averrhoa bilimbi* L.) selama 15 hari. Setelah itu dilakukan kembali pengukuran kadar glukosa darah. Dari Tabel 2 diketahui bahwa kelompok perlakuan yang diberi sari buah belimbing wuluh mengalami penurunan kadar glukosa darah yang signifikan (*p*=0,000). Hasil penelitian ini dapat membuktikan bahwa pemberian sari buah belimbing wuluh dapat menurunkan kadar glukosa darah pada tikus hiperglikemia.

Sari buah belimbing wuluh mengandung flavonoid yang dapat menurunkan kadar glukosa darah. Flavonoid merupakan senyawa seperti fenol yang berperan sebagai inhibitor glukosidase. Enzim glukosidase berlokasi di brush border di dalam usus halus dan dibutuhkan untuk pemecahan karbohidrat sebelum diserap sebagai monosakarida. Inhibitor αglukosidase menunda absorbsi dari karbohidrat yang didapatkan dari makanan, sehingga dapat mengurangi kadar glukosa darah setelah makan.²³ Selain itu penelitian lain menyebutkan bahwa flavonoid dapat menurunkan kadar glukosa darah dengan cara menghambat kerusakan sel β pankreas pada pulau langerhans yang menghasilkan insulin dan merangsang pelepasan insulin ke dalam darah. Flavonoid juga dapat mengembalikan sensitivitas reseptor insulin.²⁴

Pengujian kandungan flavonoid dalam sari buah belimbing wuluh telah dilakukan. Diketahui bahwa dalam 100 mL sari buah belimbing wuluh mengandung 41,0309 mg flavonoid (Lampiran 5). Setiap 2 mL sari buah belimbing wuluh mengandung flavonoid sebayak 0,8206 Pengujian kandungan flavonoid pada belimbing wuluh dalam bentuk utuh belum pernah dilakukan, sehingga tidak diketahui apakah jumlah flavonoid dalam buah belimbing utuh lebih sedikit atau lebih banyak bila dibandingkan dengan sari buah belimbing wuluh. Kandungan flavonoid dalam sari buah belimbing wuluh masih dinilai lebih rendah apabila dibandingkan dengan belimbing wuluh yang dibuat dalam bentuk ekstrak.

Selain flavonoid, di dalam sari belimbing wuluh juga terdapat kandungan vitamin C yang cukup tinggi yaitu sebanyak 32,55 mg/100 mL sari (Lampiran 5). Kandungan vitamin C belimbing wuluh hampir sama dengan kandungan vitamin C yang ada pada buah utuh pada penelitian sebelumnya yaitu sebanyak 32,23 mg.^{25,26} Vitamin C merupakan antioksidan non enzimatis yang memiliki peran penting dalam melindungi kerusakan sel akibat dari radikal bebas. 17 Penelitian sebelumnya menyebutkan bahwa pemberian suplementasi vitamin C dapat menurunkan kadar glukosa darah puasa dan HbA1c.27 Namun, mekanisme vitamin C dalam penurunan kadar glukosa darah belum diketahui secara pasti. Vitamin C disinyalir berperan dalam perlindungan terhadap kerusakan yang diakibatkan dari adanya radikal bebas. Vitamin C mengurangi toksisitas glukosa yang berkontribusi mencegah terjadinya penurunan massal sel β dan kadar insulin sehingga terjadi penurunan kadar glukosa darah.¹⁷

Pada kelompok kontrol positif terjadi peningkatan kadar glukosa darah yang signifikan (p=0,001). Hal ini belum diketahui secara pasti penyebabnya. Namun kemungkinan dikarenakan akibat dari pemberian pakan tinggi fruktosa dan lemak sehingga respon insulin didalam tubuh belum dapat kembali pada fungsi yang normal. Hal tersebut dapat memicu peningkatan kadar glukosa darah secara terus menerus walaupun pemberian pakan tinggi fruktosa dan lemak sudah dihentikan.

SIMPULAN

Pemberian sari buah belimbing wuluh (*Averrhoa bilimbi L.*) dengan dosis 2mL/200gBB dapat mempengaruhi kadar glukosa darah tikus yang mengalami hiperglikemia. Terdapat perbedaan secara bermakna antar kelompok sehingga sari buah belimbing wuluh dapat dijadikan sebagai salah satu alternatif obat antihiperglikemia.

DAFTAR PUSTAKA

- Candra S. Pengaruh Pemberian Ekstrak Buah Belimbing Wuluh (Averrhoa blimbi L.) Terhadap Penurunan Kadar Glukosa Darah Tikus Sprague dawley Yang Diinduksi Aloksan [Skripsi]. Semarang: Universitas Diponegoro; 2012.
- International Diabetes Federation. Panduan Untuk Manajemen Glukosa Pasca Makan [internet]. C2007. [cited 2015 July 9]. Available from: http://www.idf.org
- The National Institute of Health Resounce For Stem Cell Research. Stem Cell and Diabetes [internet]. C2009. [cited 2015 July 9]. Available from: http://stemcell.nih.gov

- 4. Kamso S, Purwantyastuti, Lubis DU, Juwita R, Robbi YK, Besral. Prevalensi dan determinan Sindrom Metabolik pada Kelompok Eksekutif di Sekitarnya. Jurnal Kesehatan Jakarta dan Masyarakat Nasional. 2011;6(2):85-90.
- Baishnab S. Effect of Aegle Marmelos Correaa On Blood Glucose Level in Normal And Alloxan-Induced Diabetic Albino Rats. The Internet Journal Of Pharmacology. 2012;10(1).
- Wulandari CE. Pengaruh Pemberian Ekstrak Bawang Merah (Allium ascalonium) Terhadap Penurunan Kadar Glukosa Darah Pada Tikus Wistar Dengan Hiperglikemia [skripsi]. Semarang: Universitas Diponegoro. 2010.
- 7. Sakti M. Pengaruh Pemberian Margarin Terhadap Kadar Glukosa Darah Puasa Tikus Sprague Dawley. Semarang; Universitas Diponegoro. 2012.
- Mozaffarian D, Tobias P, Susan EH, Nader R, Kaumudi J, Walter W, et al. Diatary Intake of Trans fatty Acid and Systemic Inflamation in Women. Am J Clin Nutr. 2004;79:606-12
- Mozumdar A, Liguori G. Persistent Increase of Prevalence of Metabolic Syndrome Among US Adult: NHANES III to NHANES 1999-2006. Diabetes Care. 2011;34(1):216-219
- 10. Dheer R, Bhatnegar P. A Study of The Antidiabetic Activity of Barleria Prionitis Linn. Indian Journal of Pharmacology. 2010;42(2):70-3.
- 11. Winarsi H, Sasongko ND, Purwanto A, Nuraeni I. Ekstrak Daun Kapulaga Menurunkan Indeks Atherogenik dan Kadar Gula Darah Tikus Diabetes Induksi Alloxan. Agritech. 2013;33(3):237-280.
- 12. Kumar A.S, Kavimani S, Jayaveera K.N. A Review on Medicinal Plants With Potential Antidiabatic Activity. International Journal Phytopharmacology. 2011;2(2):53-60.
- 13. Sutrisna E.M, Ermawati S, Mulyadin, Agung M. Uji Praklinis Efek Hipoglikemik Belimbing Wuluh (Averrhoa Bilimbi L.) dan Daun Tapak Dara (Catharanthus Roseus G). Pharmacon. 2012 Juni;13(1):37-40.
- 14. Nair S, George J, Kumar S, Gracious N. Case Report Acute Oxalate Nephropathy Following Ingestion of Averrhoa bilimbi Juice. Hidawi Publishing Corporation. 04 June 2014.
- 15. Prahastuti S. Konsumsi Fruktosa Berlebihan dapat Berdampak Buruk Bagi Kesehatan Manusia. JKM. 2011;10(2):173-189
- 16. Basciano H, Federico L, Adeli K. Fructose, Insuline Resistence, and Metabolic Dysliidemia. Biomed Central. 2005;2:5.
- 17. Khitan Z, Kim DH. Fructose: A Key Factor in the Development of Metabolic Syndrome and Hypertension. Journal of Nutrition and Metabolism. 2013:1-12.
- 18. Johnson RJ, Perez-Posa SE, Sautin YY, Manitius J, Lozada LG, Feig DI, et al. Hypothesis: Could Excessive Fructose Intake And Uric Acid Cause Type 2 Diabetes. Endocr Rev. 2009;30(1):96-16.

- 19. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A Causal Role For Uric Acid In Fructose-Induced Metabolic Syndrome. Am J Physiol. 2006;29::F625-F31.
- 20. Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino D, Tuck ML. Uric Acid Stimulates Vascular Smoot Muscle Cell Proliferation And Oxidative Stress Via The Vascular Renin-Angiotensin System. J Hypertens. 2008;26:269-75.
- 21. Koricanac G, Vulovic M, Radivojsa S, Zakula Z, Ribarac-Stepic N. Age Related Change of Insulin Reseptor, Plasma Insulin, and Glucose Level. Biogerentology. 2004;5:345-353.
- 22. Darmawan I. Patofisiologi Resistensi Insulin. Resisitensi Insulin. Jakarta: PT. Otsuka Indonesia: 2009. Hal 52.
- 23. Havsteen, Bent H. The Biochemistry and Medical Significance of The Flavonoids. Departemen of Biochemistry, University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany. 2002.
- 24. Atiqoh H. Pengaruh Berbagai Konsentrasi Infusa Kelopak Bunga Rosella (Hibiscus sabdariffa Linn) terhadap Penurunan Kadar Glukosa Darah pada Tikus Putih Jantan Galur Sprague dawley [Skripsi]. Semarang: Universitas Muhammadiyah Semarang; 2006.
- 25. Kumar KA, Gousiana SK, Anupama, Latha MNV, Latha JMN. A Review On Photochemical Constituents and Biological Assay of Averrhoa Bilimbi. International Journal of Pharmacy and Pharmaceutic Science Research. 2-13;3(4):136-139
- 26. Lim TK. Adible Medicinal and Non-Medicinal Plants Volume 1, Fruits. New York: Springer;2012.
- 27. Fadupin GT, Akpoghor AU, Okunade KA. A Comparative Study of Serum Ascorbic Acid Level in People With and Without Type 2 Diabetes in Ibadan, Nigeria. African Journal of Medicine and Medical Science. 2007;36:335-339.