# PERENCANAAN EMBUNG TAMBAKROMO UNTUK MEMENUHI KEBUTUHAN AIR BAKU

Mushafa Fahmi, Fandy Halim Pranoto Samto Atmojo, Sriyana

Jurusan Teknik Sipil, Fakultas Teknik, Universitas Diponegoro Jl. Prof Soedarto, Tembalang, Semarang. 50239, Telp.: (024)7474770, Fax.: (024)7460060

### **ABSTRAK**

Semakin langkanya sumber air, perlu ada upaya yang harus dilaksanakan untuk memenuhi kebutuhan air tersebut. Salah satu cara PT. Indocement untuk memenuhi kebutuhan air sebesar 60 liter/detik dengan memanfaatkan potensi sungai Beku dengan merencanakan pembangunan Embung Tambakromo, di Desa Wukirsari, Kecamatan Tambakromo, Kabupaten Pati.

Berdasarkan hasil analisis debit andalan dengan metode FJ MOCK diperoleh debit sebesar 120 liter/detik. Untuk desain tubuh embung dipakai data hidrologi debit banjir dengan Metode HSS Gamma I dengan debit banjir rencana periode ulang 1000 tahun sebesar 116,92 m3/detik. Kapasitas tampungan Embung Tambakromo sebesar 5.000.000 m3 . Tinggi tubuh Embung Tambakromo adalah 20 meter,lebar mercu embung 7 meter, lebar spillway 15 meter, tinggi spillway 2 meter.

Perkiraan biaya untuk membangun Embung Tambakromo adalah sebesar Rp.33.874.000.000,00.

Kata Kunci: Embung Tambakromo, Air Baku

## **ABSTRACT**

The increasing scarcity of water resources, there needs to be an effort that must be implemented to meet the needs of the water. One way PT. Indocement to meet the water requirement of 60 liters / second to harness the potential of Beku river with Tambakromo Embung development plan, in Wukirsari Village, District Tambakromo, Pati.

Based on the mainstay discharge analysis by the method of FJ mock obtained the discharge of 120 liters / sec. For the body design of the small dam used the flood discharge hydrological data with HSS Gamma I method with flood discharge plan 1000 years return period amounted 116.92 m3/second. Tambakromo Small Dam capacity is 5,000,000 m3. Tambakromo Small Dam height is 20 meters, 7 meters wide summit reservoir, spillway width of 15 meters, spillway height is 2 meters.

Estimated cost to build Tambakromo Small Dam amounted Rp.33.874.000.000, 00.

Keywords: Tambakromo Small Dam, Raw Water

#### **PENDAHULUAN**

Semakin langkanya sumber air untuk kebutuhan air baku di wilayah Pati seperti pada saat kemarau mengalami kekurangan air, sebaliknya pada saat musim hujan mengalami kelebihan air namun tidak bisa dimanfaatkan atau ditampung, sehingga perlu adanya upaya yang harus dilakukan yaitu membangun infrastruktur bangunan air. Begitu pula dengan PT. Indocement perlu membangun infrastruktur bangunan air guna menampung air baku untuk memenuhi kebutuhan air baku agar kebutuhan operasional kawasan industri tersebut terpenuhi.

Berdasarkan hal tersebut maka PT. Indocement membangunan embung yang bertujuan untuk kebutuhan operasional di daerah Kabupaten Pati, sehingga kebutuhan air untuk operasional akan terpenuhi. Selain sebagai tampungan air di musim penghujan yang sekaligus dapat mencegah banjir.

Berdasarkan latar belakang tersebut, tugas akhir ini bertujuan untuk merencanakan suatu konstruksi bangunan air berupa embung pada Sungai Beku. Pembuatan embung ini adalah upaya untuk memenuhi kebutuhan air baku kawasan industri dan masyarakat disekitarnya.

#### ANALISIS HIDROLOGI

Hidrologi adalah bidang pengetahuan yang mempelajari kejadian-kejadian serta penyebab air alamiah di bumi. Faktor hidrologi yang mempengaruhi wilayah hulu Sungai Beku adalah curah hujan (*presipitasi*). Curah hujan pada suatu daerah merupakan salah satu faktor yang menentukan besarnya debit banjir yang terjadi di suatu wilayah. Berdasarkan data curah hujan tersebut kemudian dilakukan perhitungan untuk memperkirakan debit banjir rancangan, kebutuhan air dan debit andalan. Adapun langkah - langkah dalam perhitungan hidrologi adalah sebagai berikut:

- a. Menentukan Daerah Aliran Sungai (DAS) beserta luasnya.
- b. Menganalisis curah hujan harian Daerah Aliran Sungai.
- c. Menghitung parameter statistik.
- d. Memilih jenis sebaran yang dapat digunakan.
- e. Menguji kecocokan sebaran.
- f. Menganalisis curah hujan rencana.
- g. Menghitung intensitas curah hujan rencana.
- h. Menghitung hujan berpeluang maksimum.
- i. Menghitung debit banjir rencana.
- j. Menghitung debit andalan.
- k. Menghitung kebutuhan air baku.
- 1. Menghitung kebutuhan air irigasi.
- m. Menghitung volume tampungan Embung.
- n. Menganalisis volume tampungan Embung.
- o. Menghitung neraca air yang merupakan perbandingan antara debit air yang tersedia dengan debit air yang dibutuhkan.

Dalam analisis curah hujan rata – rata digunakan metode *Thiessen* dengan tiga stasiun hujan yang berpengaruh dalam perhitungan yaitu Stasiun Cabean, Stasiun Kayen, dan Stasiun Gabus. Dari data yang didapat, hasil perhitungan curah hujan ditunjukkan pada Tabel berikut:

Tabel 1 Perhitungan Curah Hujan dengan Metode Thiessen

|    |         | Sta.   | Sta.  | Sta.  | RH      | ode Thiessen | RH              |
|----|---------|--------|-------|-------|---------|--------------|-----------------|
| NO | TAHUN   | Cabean | Kayen | Gabus | Rencana | Tanggal      | Rencana<br>Maks |
|    |         | mm     | mm    | mm    | mm      |              | mm              |
| Bo | bot (%) | 31,3   | 68,7  | 0     |         |              |                 |
|    |         | 125    | 125   | 25    | 125     | 4 Desember   |                 |
| 1  | 2003    | 125    | 125   | 25    | 125     | 4 Desember   | 125             |
|    |         | 0      | 0     | 77    | 0       | 6 Februari   |                 |
|    |         | 70     | 70    | 0     | 70      | 30 Desember  |                 |
| 2  | 2004    | 70     | 70    | 0     | 70      | 30 Desember  | 70              |
|    |         | 0      | 0     | 55    | 0       | 21 Februari  |                 |
|    |         | 40     | 40    | 1     | 40      | 4 Maret      |                 |
| 3  | 2005    | 40     | 40    | 1     | 40      | 4 Maret      | 40              |
|    |         | 11     | 11    | 80    | 11      | 30 Desember  |                 |
|    |         | 98     | 98    | 14    | 98      | 26 Februari  |                 |
| 4  | 2006    | 98     | 98    | 14    | 98      | 26 Februari  | 98              |
|    |         | 0      | 0     | 95    | 0       | 24 Februari  |                 |
|    |         | 59     | 48    | 0     | 51      | 8 Maret      |                 |
| 5  | 2007    | 0      | 106   | 25    | 73      | 25 Desember  | 73              |
|    |         | 40     | 0     | 35    | 13      | 26 Desember  |                 |
|    |         | 58     | 45    | 21    | 49      | 14 Februari  |                 |
| 6  | 2008    | 20     | 124   | 20    | 91      | 7 Februari   | 91              |
|    |         | 0      | 9     | 48    | 6       | 20 Maret     |                 |
|    |         | 85     | 36    | 0     | 51      | 6 Maret      |                 |
| 7  | 2009    | 12     | 155   | 20    | 110     | 14 Januari   | 110             |
|    |         | 24     | 64    | 40    | 51      | 16 April     |                 |
|    |         | 125    | 0     | 0     | 39      | 21 Februari  |                 |
| 8  | 2010    | 30     | 102   | 62    | 79      | 18 Oktober   | 79              |
|    |         | 30     | 102   | 62    | 79      | 18 Oktober   |                 |
|    |         | 68     | 18    | 25    | 34      | 20 Desember  | _               |
| 9  | 2011    | 0      | 105   | 25    | 72      | 12 Januari   | 72              |
|    |         | 57     | 14    | 150   | 27      | 3 Desember   |                 |
|    |         | 100    | 11    | 25    | 39      | 14 Februari  |                 |
| 10 | 2012    | 0      | 60    | 5     | 41      | 12 November  | 41              |
|    |         | 37     | 31    | 50    | 33      | 8 Januari    |                 |

Kemudian menghitung parameter stastistik dan menentukan distribusi sebaran yang akan diuji dengan metode Chi Kuadrat dan Smirnov Kolmogorof. Berdasarkan analisis distribusi data hujan menggunakan distribusi sebaran Log Pearson Tipe III di dapat rekapitulasi curah hujan rencana sebagai berikut :

Tabel 2 Rekapitulasi perhitungan curah hujan rencana dengan Metode Log Pearson Tipe III

| Periode Ulang | Curah Hujan Rencana<br>(mm/jam) |
|---------------|---------------------------------|
| 2             | 79,092                          |
| 5             | 102,478                         |
| 10            | 114,476                         |
| 25            | 126,590                         |
| 50            | 133,918                         |
| 100           | 140,106                         |

Perhitungan debit rencana menggunakan beberapa metode, antara lain Rasional, *Weduwen, Haspers*, dan *HSS Gamma I*. Hasil perhitungan debit rencana dapat dilihat pada tabel berikut:

Tabel 3. Rekapitulasi Hasil Perhitungan Debit Banjir Rencana (m³/dt)

| Periode<br>Ulang | Weduwen | Harspers | Rasional | HSS Gama<br>I |
|------------------|---------|----------|----------|---------------|
| 2                | 15,50   | 109,05   | 118,26   | 46,71         |
| 5                | 22,26   | 138,77   | 153,23   | 68,08         |
| 10               | 26,24   | 153,61   | 171,17   | 66,54         |
| 25               | 30,68   | 168,32   | 189,28   | 90,10         |
| 50               | 33,60   | 177,09   | 200,24   | 96,80         |
| 100              | 36,28   | 184,42   | 209,49   | 102,45        |
| 1000             | 46,07   | 202,89   | 233,18   | 116,92        |

Dari hasil perhitungan debit di atas dapat diketahui bahwa terjadi perbedaan hasil perhitungan antara metode-metode yang dipakai. Oleh karena itu berdasarkan pertimbangan dari segi keamanan dan ketidakpastian besarnya debit banjir yang pernah terjadi pada daerah tersebut maka ditetapkan bahwa debit banjir rencana yang digunakan adalah debit banjir periode ulang 25 tahun yang diambil dari perhitungan metode HSS Gama I yaitu sebesar 90,10 m3/dt.

Setelah mengetahui debit banjir rencana, kemudian mencari debit andalan dengan menggunakan cara analisis water balance dari Dr. F.J Mock berdasarkan data curah hujan bulanan, jumlah hari hujan, evapotranspirasi, dan karakteristik hidrologi daerah pengaliran. Hasil rekapitulasi perhitungan debit andalan disajikan dalam tabel berikut :

Tabel 4 Rekapitulasi Perhitungan Debit Andalan (m³/dt)

| <b></b> |      | Bulan |      |      |      |      |      |      |      |      |      |      |  |  |
|---------|------|-------|------|------|------|------|------|------|------|------|------|------|--|--|
| Tahun   | Jan  | Feb   | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Okt  | Nov  | Des  |  |  |
| 2003    | 0,29 | 0,26  | 0,23 | 0,21 | 0,19 | 0,17 | 0,15 | 0,14 | 0,12 | 0,14 | 0,13 | 0,21 |  |  |
| 2004    | 0,46 | 0,47  | 0,46 | 0,30 | 0,36 | 0,19 | 0,18 | 0,14 | 0,12 | 0,12 | 0,12 | 0,17 |  |  |
| 2005    | 0,47 | 0,37  | 0,38 | 0,31 | 0,20 | 0,19 | 0,17 | 0,15 | 0,12 | 0,12 | 0,14 | 0,29 |  |  |
| 2006    | 0,83 | 0,42  | 0,31 | 0,29 | 0,26 | 0,17 | 0,15 | 0,14 | 0,12 | 0,11 | 0,11 | 0,14 |  |  |
| 2007    | 0,35 | 0,36  | 0,42 | 0,47 | 0,19 | 0,21 | 0,15 | 0,15 | 0,13 | 0,14 | 0,18 | 0,31 |  |  |
| 2008    | 0,61 | 1,06  | 0,44 | 0,30 | 0,24 | 0,18 | 0,15 | 0,14 | 0,14 | 0,15 | 0,16 | 0,09 |  |  |
| 2009    | 0,59 | 0,57  | 0,38 | 0,37 | 0,27 | 0,18 | 0,16 | 0,14 | 0,13 | 0,12 | 0,14 | 0,15 |  |  |
| 2010    | 1,13 | 0,53  | 0,28 | 0,27 | 0,23 | 0,27 | 0,18 | 0,18 | 0,22 | 0,24 | 0,16 | 0,39 |  |  |
| 2011    | 0,86 | 0,46  | 0,60 | 0,34 | 0,23 | 0,19 | 0,17 | 0,14 | 0,13 | 0,14 | 0,23 | 0,34 |  |  |
| 2012    | 1,01 | 0,58  | 0,75 | 0,26 | 0,20 | 0,18 | 0,15 | 0,14 | 0,12 | 0,14 | 0,21 | 0,23 |  |  |

Tabel 5 Debit Andalan Embung Tambakromo (m³/dt)

| Peluang      |      | Bulan |      |      |      |      |      |      |      |      |      |      |
|--------------|------|-------|------|------|------|------|------|------|------|------|------|------|
| Q<br>Andalan | Jan  | Feb   | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Okt  | Nov  | Des  |
| 10,00%       | 1,13 | 1,06  | 0,75 | 0,47 | 0,36 | 0,27 | 0,18 | 0,18 | 0,22 | 0,24 | 0,23 | 0,39 |
| 20,00%       | 1,01 | 0,58  | 0,60 | 0,37 | 0,27 | 0,21 | 0,18 | 0,15 | 0,14 | 0,15 | 0,21 | 0,34 |
| 30,00%       | 0,86 | 0,57  | 0,46 | 0,34 | 0,26 | 0,19 | 0,17 | 0,15 | 0,13 | 0,14 | 0,18 | 0,31 |
| 40,00%       | 0,83 | 0,53  | 0,44 | 0,31 | 0,24 | 0,19 | 0,17 | 0,14 | 0,13 | 0,14 | 0,16 | 0,29 |
| 50,00%       | 0,61 | 0,47  | 0,42 | 0,30 | 0,23 | 0,19 | 0,16 | 0,14 | 0,13 | 0,14 | 0,16 | 0,23 |
| 60,00%       | 0,59 | 0,46  | 0,38 | 0,30 | 0,23 | 0,18 | 0,15 | 0,14 | 0,12 | 0,14 | 0,14 | 0,21 |
| 70,00%       | 0,47 | 0,42  | 0,38 | 0,29 | 0,20 | 0,18 | 0,15 | 0,14 | 0,12 | 0,12 | 0,14 | 0,17 |
| 80,00%       | 0,46 | 0,37  | 0,31 | 0,27 | 0,20 | 0,18 | 0,15 | 0,14 | 0,12 | 0,12 | 0,13 | 0,15 |
| 90,00%       | 0,35 | 0,36  | 0,28 | 0,26 | 0,19 | 0,17 | 0,15 | 0,14 | 0,12 | 0,12 | 0,12 | 0,14 |
| 100,00%      | 0,29 | 0,26  | 0,23 | 0,21 | 0,19 | 0,17 | 0,15 | 0,14 | 0,12 | 0,11 | 0,11 | 0,09 |
|              |      |       |      |      |      |      |      |      |      |      |      |      |
| Rerata       | 0,66 | 0,51  | 0,42 | 0,31 | 0,24 | 0,20 | 0,16 | 0,14 | 0,14 | 0,14 | 0,16 | 0,23 |
| Q80%         | 0,46 | 0,37  | 0,31 | 0,27 | 0,20 | 0,18 | 0,15 | 0,14 | 0,12 | 0,12 | 0,13 | 0,15 |

Untuk Embung Tambakromo dengan debit andalan 80% didapat debit sebesar  $0.12 \, \text{m3/det} = 120 \, \text{lt/det}.$ 

# kebutuhan air baku

Kemudian menganalisis kebutuhan air baku di daerah yang akan dilayani oleh Embung Tambakromo, Pemenuhan kebutuhan air baku dari Embung Tambakromo diperuntukkan bagi kebutuhan operasional pabrik pada kawasan industri sebesar 60 lt/dt dan melayani 30 % untuk umum (Hidran Umum) sebesar 30 lt/orang/hari untuk jumlah penduduk di 4 (empat) kecamatan disekitar embung Tambakromo yaitu kecamatan Tambakromo, kecamatan Kayen, Kecamatan Gabus, dan kecamatan Winong.Total kebutuhan yang direncanakan untuk Embung Tambakromo adalah sebesar 6787,29 m³/hari.

|    | 14001 0 110040         | tunun / III Daku |         |  |  |  |  |
|----|------------------------|------------------|---------|--|--|--|--|
| No | Keterangan             | Satuan           | Jumlah  |  |  |  |  |
| 1  | Jumlah Penduduk        | jiwa             | 225253  |  |  |  |  |
| 2  | Tingkat Pemakaian Air  |                  |         |  |  |  |  |
|    | a. Domestik            |                  |         |  |  |  |  |
|    | Hidran Umum            | m3/orang/hari    | 0,03    |  |  |  |  |
|    | b. Non Domestik        |                  |         |  |  |  |  |
|    | Industri               | m3/detik         | 0,06    |  |  |  |  |
| 3  | Tingkat Pelayanan      | %                | 100     |  |  |  |  |
| 4  | Rasio Pelayanan        |                  |         |  |  |  |  |
|    | a. Hidran Umum         | %                | 30      |  |  |  |  |
|    | b. Industri            | %                | 70      |  |  |  |  |
| 5  | Kebutuhan Domestik     |                  |         |  |  |  |  |
|    | Hidran Umum            | m3/hari          | 2027,28 |  |  |  |  |
| 6  | Kebutuhan Non Domestik |                  |         |  |  |  |  |
|    | Industri               | m3/hari          | 3628,8  |  |  |  |  |
| 7  | Total                  | m3/hari          | 5656,07 |  |  |  |  |
| 8  | Kehilangan Air         | %                | 20      |  |  |  |  |
| 9  | Total Kebutuhan Air    | m3/hari          | 6787,29 |  |  |  |  |

Tabel 6 Kebutuhan Air Baku

# **Volume Tampungan Embung**

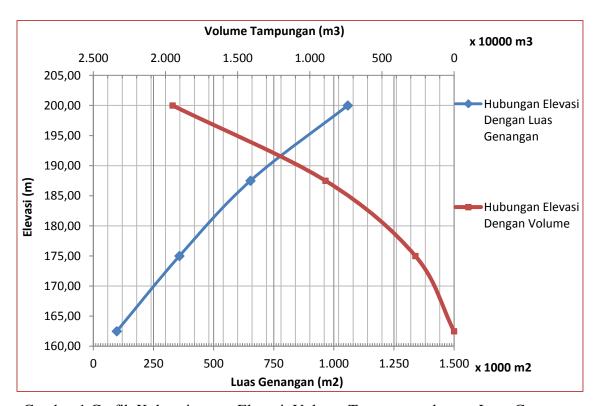
Untuk mencari volume tampungan dari kondisi topografi eksisting, dapat dicari melalui luas permukaan genangan air waduk yang dibatasi garis kontur, kemudian dicari volume yang dibatasi oleh dua garis kontur yang berurutan dengan menggunakan rumus pendekatan volume sebagai berikut:

$$Vx = \frac{1}{3} \times Z \times \left(F_y + F_x + \sqrt{F_y \times F_x}\right)$$

dengan:

Vx = volume pada kontur (m3)

Z = beda tinggi antar kontur (m)


Fy = luas pada kontur Y (m2)

Fx = luas pada kontur X (m2)

Dari hasil perhitungan volume tampungan embung tiap elevasi kemudian diakumulasi dan dibuat grafik hubungan antara elevasi kontur dengan luas area dan grafik hubungan antara elevasi kontur dengan volume embung.

Tabel 7 Perhitungan Volume Tampungan Embung Tambakromo

| No | Elevasi | LuasGenangan | Volume        | Volume<br>Komulatif |
|----|---------|--------------|---------------|---------------------|
|    | (m)     | $(m^2)$      | (m3)          | (m3)                |
| 1  | 162,50  | 97.597,82    | 0.00          | 0.00                |
| 2  | 175,00  | 358.103,58   | 2.677.712,20  | 2.677.712,20        |
| 3  | 187,50  | 653.538,07   | 6.230.885,78  | 8.908.597,98        |
| 4  | 200,00  | 1.058.191,37 | 10.597.230,53 | 19.505.828,51       |



Gambar 1 Grafik Kolerasi antara Elevasi, Volume Tampungan dengan Luas Genangan Embung Tambakromo

# **Analisis Volume Tampungan Embung**

Berdasarkan hubungan elevasi +180 m, luas genangan sebesar 468.214 m2, debit Inflow dan Outflow maka volume tampungan Embung yang direncanakan adalah sebesar 5000.000 m3.

Dari hasil perhitungan volume kehilangan air akibat evaporasi pada permukaan Embung didapatkan Ve sebesar 34.465 m3 selama 1 tahun. Adapun perhitungannya dapat dilihat pada tabel berikut:

| No  | Urajan                                             | Cotuon  | Satuan Bulan |         |         |         |         |         |         |         |         |         |         |         |
|-----|----------------------------------------------------|---------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| INO | Uraiaii                                            | Satuan  | Jan          | Feb     | Mar     | Apr     | May     | Jun     | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |
|     |                                                    |         |              |         |         |         |         |         |         |         |         |         |         |         |
| 1   | Kelembaban Relatif                                 | %       | 96,25        | 96,39   | 96,05   | 95,03   | 94,99   | 97,55   | 97,72   | 98,08   | 93,93   | 97,73   | 97,86   | 98,30   |
| 2   | Suhu Udara                                         | °C      | 26,10        | 26,26   | 26,10   | 26,01   | 26,08   | 25,92   | 26,08   | 25,89   | 25,68   | 25,86   | 25,66   | 26,02   |
| 3   | Kecepatan Angin                                    | m/detik | 0,81         | 0,84    | 0,67    | 0,60    | 0,56    | 0,61    | 0,67    | 0,80    | 0,86    | 0,87    | 0,62    | 0,62    |
| 4   |                                                    | mile/hr | 43,52        | 45,36   | 36,18   | 32,29   | 30,02   | 32,94   | 36,18   | 43,09   | 46,31   | 47,12   | 33,70   | 33,70   |
| 5   | Sinar Matahari                                     | (%)     | 31,07        | 29,84   | 37,39   | 45,00   | 54,98   | 65,72   | 73,06   | 67,66   | 63,07   | 51,64   | 45,60   | 33,23   |
| 6   | Tekanan Uap jenuh (ea) tabel 2a dan 2b dgn data [2 | mm/Hg   | 25,45        | 25,74   | 25,45   | 25,31   | 25,45   | 25,08   | 25,45   | 25,08   | 24,79   | 25,08   | 24,79   | 25,31   |
| 7   | Tekanan Uap Sebenarnya (ed) [6]*[1]                | mm/Hg   | 24,50        | 24,81   | 24,45   | 24,05   | 24,17   | 24,46   | 24,87   | 24,60   | 23,28   | 24,51   | 24,26   | 24,88   |
| 8   | Evaporasi ( E) 0.35*[5]-[6]*[1+[4/100]]            | mm/hr   | 0,48         | 0,47    | 0,48    | 0,58    | 0,58    | 0,29    | 0,28    | 0,24    | 0,77    | 0,29    | 0,25    | 0,20    |
| 9   |                                                    | m/detik | 5,55E-09     | 5,5E-09 | 5,5E-09 | 6,7E-09 | 6,7E-09 | 3,3E-09 | 3,2E-09 | 2,8E-09 | 8,9E-09 | 3,4E-09 | 2,9E-09 | 2,3E-09 |
| 10  | Jumlah detik (1 bulan)                             | detik   | 2678400      | 2419200 | 2678400 | 2592000 | 2678400 | 2592000 | 2678400 | 2678400 | 2592000 | 2678400 | 2592000 | 2678400 |
|     | evaporasi tiap bulan dalam m3                      |         |              |         |         |         |         |         |         |         |         |         |         |         |
|     | [5]*[9]*luas genangan*[10] (m³)                    |         |              | 1851    | 2599    | 3679    | 4634    | 2644    | 2933    | 2368    | 6832    | 2202    | 1590    | 971     |
|     | total kehilangan selama 1 tahun (m³)               | ,       |              | 34465   |         |         |         |         |         |         |         |         |         |         |

Tabel 8 Perhitungan Evaporasi pada Permukaan Embung

Berdasarkan data penyelidikan tanah yang ada, jenis tanah dilokasi perencanaan Embung berupa tanah lempung. Jenis tanah ini memiliki koefisien filtrasi sebesar 3 x 10-6 cm/detik. Sehingga besarnya volume yang disediakan untuk resapan Embung dapat diperhitungkan sebagai berikut:

```
3 x 10-6 cm/detik = 0,93312 m/tahun Sehingga besarnya Vi
```

Vi = Koefisien filtrasi x Luas Genangan

= 0.93312 m/tahun x 468.214 m2

=436.900 m3/tahun

# Perhitungan Volume Sedimen Embung

Volume yang disediakan untuk sedimen pada embung dapat diperkirakan dengan pendekatan laju erosi tanah yang terjadi pada skala DAS (0,2 kg/m2/tahun). Besarnya volume sedimen ini juga dipengaruhi oleh jenis tanah yang terdapat pada daerah tersebut.

Berdasarkan data penyelidikan tanah di KecamatanTambakromo, Desa Wukirsari, diketahui bahwa jenis tanah dasar penyusun daerah tersebut berupa tanah lempung dengan massa jenis (γ) sebesar 2640 kg/m3.Diasumsikan laju erosi 0,2 berdasarkan tabel 2.7. Perhitungan besarnya volume yang disediakan untuk sedimen selama 25 tahun adalah:

```
Vs = (Laju Erosi / \gamma) x Luas Daerah Tangkapan x Umur Rencana
```

 $= (0.2 / 2640) \times 13,977 \times 106 \times 25$ 

= 26.472 m3

# Perhitungan Volume Efektif Tampungan

Volume tampungan untuk melayani kebutuhan air disebut juga Volume Efektif storage. Volume efektif storage adalah besarnya volume penyimpanan air di dalam embung untuk memenuhi kebutuhan air baku. Volume storage dihitung berdasarkan besarnya debit andalan yang ada.

#### Diketahui:

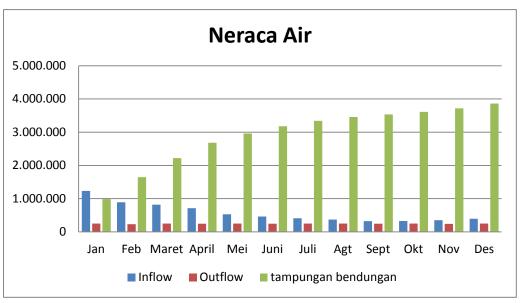
Volume TampunganEmbungelevasi+ 180 m (Vt180) = 5.000.000 m3 Volume Evaporasi (Ve) = 34.465 m3 Volume Sedimen (Vs) = 26.472 m3

Volume Tampungan Mati= Vs = 26.472 m 3 (padaelevasi + 163 m)

Volume Air efektif = Vt+305 - Ve - Vs= 5.000.000- 34.465- 26.472 = 4.939.063 m3

## Perhitungan Neraca Air

Neraca air diperhitungkan dengan pendekatan debit andalan dari analisis data debit, perhitungannya didekati dengan:


S = Inflow - Outflow

Perhitungan neraca air ini digambarkan dalam grafik neraca air setelah ada embung. Adapun perhitungan-perhitungan dan grafik-grafiknya disajikan dalam tabel dan gambar sebagai berikut:

Bulan Juli September Januari Februari Maret Agustus Oktober November Desember 321.126 Q inflow 819.920 527.246 409.762 368.786 348.742 1.233.751 890.066 710.388 462.784 324.815 210.406 190.044 210.406 203.619 210.406 203.619 210.406 203.619 210.406 Q kebutuhan 210.406 203.619 210.406 Evaporasi 2.163 1.851 2.599 3.679 4.634 2.644 2.933 2.368 6.832 2.202 1.590 971 (m3/bulan) 36.408 36.408 36.408 36.408 36.408 Resapan 36.408 36.408 36.408 36.408 36.408 36.408 36.408 248.978 228.303 249.413 243.706 251.448 242.671 249.747 249.182 246.859 249.016 241.617 247.785 Q outflow 984.773 661.763 570.507 466.683 275.798 220.113 160.015 119.603 74.267 75.799 107.125 147.032 Surplus Defisit 3.179.637 3.459.255 3.533.522 984,773 1.646.536 2.217.043 2.683.726 2.959.524 3.339.652 3.609.321 3.716.446 3.863.478 Tamp. Bendungan

Tabel 9 Neraca Air

Antara Inflow dan Outflow tidak terjadi defisit,yang terjadi adalah surplus atau air yang tertampung. Air yang tertampung setiap bulan di akumulasikan sehingga menjadi sebesar 3.863.478 m3.



Gambar 2 Grafik Neraca Air

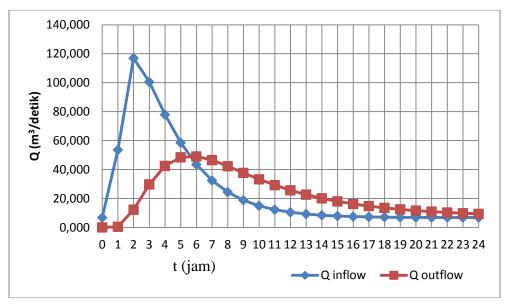
# Penelusuran banjir (Floodrouting)

Data – data yang diperlukan pada penelusuran banjir lewat waduk adalah:

- a. Hubungan volume tampungan dengan elevasi Embung.
- b. Hubungan debit keluar dengan elevasi muka air di Embungserta hubungan debit keluar dengan tampungan.
- c. Hidrograf inflow, I.
- d. Nilai awal dari tampungan S, *inflow* I, debit keluar pada t =0.

Digunakan pelimpah (spillway) ambang lebar dengan elevasi dan volume sebagai berikut:

$$Q = \frac{2}{3} \times Cd \times B \times \sqrt{2g} \times H^{\frac{3}{2}}$$


 $Cd = 1.7 - 2.2 \text{ m}^{1/2}/\text{det diambil } 2.2 \text{ m}^{1/2}/\text{det.}$ 

$$B = 15 \text{ m}$$

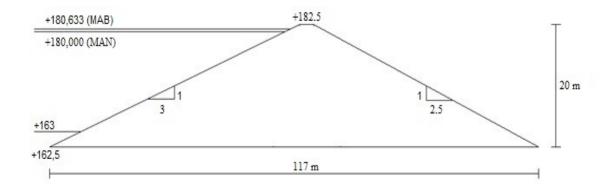
$$Q = 97,448 \times H^{3/2}$$

Tabel 10 Perhitungan FloodRouting

| Jam | t    | O Inflow | Q rerata | Qrerata*t | Asumsi       | Q       | Q Out  | Storage  | Storage | Storage Banjir | Storage     | Elevasi       |
|-----|------|----------|----------|-----------|--------------|---------|--------|----------|---------|----------------|-------------|---------------|
| 1   | 2    | 3        | `        |           | Elevasi      | Outflow | rerata | 9        | Normal  |                | Kumul       | 12            |
| 0   | 2    | 6,764    | 4        | 5         | 6<br>180,000 | 7       | 8      | 9        | 10      | 11             | 12          | 13<br>180,000 |
| - 0 | 3600 | 0,704    | 30,165   | 108594,6  | 180,000      | 0       | 0,223  | 803,3081 | 5000000 | 107791,33      | 5107791,33  | 180,000       |
| 1   | 3000 | 53,566   | 30,103   | 100334,0  | 180,028      | 0,446   | 0,223  | 803,3081 | 3000000 | 10//91,33      | 3107791,33  | 180,069       |
| 1   | 3600 | 33,300   | 85,242   | 306871,4  | 100,020      | 0,440   | 6,340  | 22822,3  |         | 284049,14      | 5391840,46  | 100,007       |
| 2   | 3000 | 116,918  | 03,242   | 300671,4  | 180,251      | 12,233  | 0,340  | 22022,3  |         | 204047,14      | 3371840,40  | 180,251       |
|     | 3600 | 110,210  | 108,707  | 391344,9  | 100,231      | 12,233  | 20,969 | 75489,09 |         | 315855,86      | 5707696,32  | 100,231       |
| 3   | 2000 | 100,496  | 100,707  | 0,10,,    | 180,453      | 29,706  | 20,707 | 70.00,00 |         | 212022,00      | 0707070,02  | 180,453       |
|     | 3600 | ,        | 89,200   | 321121,6  | ,            | 7       | 36,107 | 129985,7 |         | 191135,85      | 5898832,18  |               |
| 4   |      | 77,905   |          |           | 180,575      | 42,509  |        |          |         | ,              | Í           | 180,575       |
|     | 3600 |          | 68,221   | 245596,8  |              |         | 45,470 | 163691,5 |         | 81905,25       | 5980737,43  |               |
| 5   |      | 58,537   |          |           | 180,627      | 48,431  |        |          |         |                |             | 180,627       |
|     | 3600 |          | 51,017   | 183662,2  |              |         | 48,729 | 175426,1 |         | 8236,15        | 5988973,58  |               |
| 6   |      | 43,497   |          |           | 180,633      | 49,028  |        |          |         |                |             | 180,633       |
|     | 3600 |          | 37,942   | 136589,6  |              |         | 47,751 | 171904,4 |         | -35314,73      | 5953658,85  |               |
| 7   |      | 32,386   |          |           | 180,610      | 46,475  |        |          |         |                |             | 180,610       |
|     | 3600 |          | 28,402   | 102247,8  |              |         | 44,377 | 159756,2 |         | -57508,40      | 5896150,46  |               |
| 8   |      | 24,418   |          |           | 180,573      | 42,279  |        |          |         |                |             | 180,573       |
|     | 3600 | 10.016   | 21,617   | 77821,03  | 100.501      | 27.505  | 39,983 | 143937,8 |         | -66116,73      | 5830033,73  | 100.501       |
| 9   | 2600 | 18,816   | 1 6 070  | 60742.00  | 180,531      | 37,686  | 25.455 | 107/00 7 |         | 66005.70       | 57.62127.05 | 180,531       |
| 10  | 3600 | 14.020   | 16,873   | 60742,88  | 100 400      | 22.224  | 35,455 | 127638,7 |         | -66895,78      | 5763137,95  | 100 400       |
| 10  | 2600 | 14,930   | 12 507   | 19050 12  | 180,488      | 33,224  | 21 227 | 112410.2 |         | 62467.92       | 5600670 12  | 180,488       |
| 11  | 3600 | 12,264   | 13,597   | 48950,43  | 180,448      | 29,231  | 31,227 | 112418,3 |         | -63467,83      | 5699670,12  | 180,448       |
| 11  | 3600 | 12,204   | 11,360   | 40894,4   | 100,440      | 29,231  | 27,431 | 98751,86 |         | -57857,46      | 5641812,66  | 100,440       |
| 12  | 3000 | 10,455   | 11,500   | 40074,4   | 180,411      | 25,631  | 27,431 | 76731,00 |         | -37637,40      | 3041812,00  | 180,411       |
| 12  | 3600 | 10,433   | 9,848    | 35452,11  | 100,411      | 23,031  | 24,139 | 86901,33 |         | -51449,22      | 5590363,44  | 100,411       |
| 13  | 2000 | 9,241    | 2,010    | 00 102,11 | 180,378      | 22,647  | 2.,107 | 00,01,00 |         | 51115,22       | 2270202,    | 180,378       |
|     | 3600 | ,,       | 8,833    | 31800,24  | ,            | ,       | 21,372 | 76937,73 |         | -45137,48      | 5545225,96  |               |
| 14  |      | 8,426    |          |           | 180,349      | 20,096  |        |          |         | ,              | Í           | 180,349       |
|     | 3600 |          | 8,153    | 29349,78  |              |         | 19,031 | 68513,31 |         | -39163,53      | 5506062,43  |               |
| 15  |      | 7,879    |          |           | 180,324      | 17,967  |        |          |         |                |             | 180,324       |
|     | 3600 |          | 7,696    | 27705,48  |              |         | 17,081 | 61491,78 |         | -33786,30      | 5472276,13  |               |
| 16  |      | 7,513    |          |           | 180,302      | 16,195  |        |          |         |                |             | 180,302       |
|     | 3600 |          | 7,389    | 26602,13  |              |         | 15,453 | 55630,18 |         | -29028,05      | 5443248,08  |               |
| 17  |      | 7,266    |          |           | 180,284      | 14,710  |        |          |         |                |             | 180,284       |
| 1.0 | 3600 |          | 7,184    | 25861,76  | 100 7        | 10 :    | 14,104 | 50774,7  |         | -24912,94      | 5418335,14  | 100 5         |
| 18  | 2600 | 7,101    | 7.046    | 05264.05  | 180,268      | 13,498  | 10.000 | 46750 40 |         | 21207.72       | 520,0040,01 | 180,268       |
| 10  | 3600 | 6,000    | 7,046    | 25364,96  | 100.254      | 10 475  | 12,986 | 46750,49 |         | -21385,53      | 5396949,61  | 100.254       |
| 19  | 2600 | 6,990    | 6.052    | 25021 6   | 180,254      | 12,475  | 12.047 | 12260.25 |         | 19227 65       | 5270611.06  | 180,254       |
| 20  | 3600 | 6.016    | 6,953    | 25031,6   | 180,242      | 11,619  | 12,047 | 43369,25 |         | -18337,65      | 5378611,96  | 180,242       |
| ∠0  | 3600 | 6,916    | 6,891    | 24807,91  | 100,242      | 11,019  | 11,261 | 40538,12 |         | -15730,21      | 5362881,75  | 100,242       |
| 21  | 3000 | 6,866    | 0,071    |           | 180,232      | 10 902  | 11,201 | +0550,12 |         | -13/30,21      | 3302001,73  | 180,232       |
| 21  | 3600 | 0,000    | 6,849    | 24657,81  | 100,232      | 10,702  | 10,598 | 38153,13 |         | -13495,32      | 5349386,43  | 100,232       |
| 22  | 2000 | 6,833    | 3,017    | 21007,01  | 180,223      | 10,294  | 10,570 | 20122,12 |         | 15 175,52      | 2317300,43  | 180,223       |
|     | 3600 | 2,300    | 6,821    | 24557,09  | ,223         | ,/      | 10,042 | 36151,39 |         | -11594,30      | 5337792,13  | ,220          |
| 23  |      | 6,810    | -,       | ,         | 180,216      | 9,790   | -,     | , . ,    |         | ,              |             | 180,216       |
|     | 3600 |          | 6,803    | 24489,51  |              | ·       | 9,574  | 34467,52 |         | -9978,01       | 5327814,12  |               |
| 24  |      | 6,795    |          |           | 180,210      | 9,359   |        |          |         |                |             | 180,210       |
| MA  | AX   | 116,918  | _        |           | 180,633      | 49,028  | _      |          |         |                | 5988973,58  | 180,633       |



Gambar 3 Grafik FloodRouting


Penelusuran banjir lewat pelimpah erat kaitannya dengan penentuan tinggi puncak embung. Sedangkan elevasi muka air waduk maksimum tergantung dari dimensi dan tipe pelimpah. Berdasarkan perhitungan flood routing di atas didapat storage maksimum yang terjadi adalah sebesar 5.988.973,58 m³ dengan elevasi maksimum +180,633 m, sehingga elevasi puncak embung = elevasi muka air banjir + tinggi jagaan =180,633+ 2 (diambil 2 meter untuk memberi keamanan akibat gelombang air yang ditimbulkan oleh angin) = 182,633m. Maka elevasi puncak embung direncanakan pada ketinggian 182,5 m.

## PERENCANAAN KONSTRUKSI EMBUNG

Dalam perencanaan ini dibatasi pada perencanaan tubuh Embung, analisis stabilitas, dan bangunan pelengkap, yang meliputi bangunan pelimpah dan bangunan penyadap.

Berdasarkan analisis tampungan Embung, muka air normal, banjir dan tampungan mati, didapat dimensi tubuh Embung sebagai berikut :

- Lebar Mercu Embung 7 m.
- Lebar Dasar Embung 117 m.
- Panjang Embung 405 m.
- Kemiringan Lereng Embung (*slope gradient*) dengan pertimbangan keamanan stabilitas longsor, maka diambil kemiringan 1:3 untuk sebelah hulu dan 1:2,5 untuk sebelah hilir.



Gambar 4 Sketsa penentuan tinggi, lebar, dan panjang dasar Embung

# RENCANA ANGGARAN BIAYA DAN JADWAL PELAKSANAAN

Rencana Anggaran Biaya untuk desain Embung Tambakromo adalah sebagai berikut:

Tabel 11 Rencana Anggaran Biaya

| No | Uraian Pekerjaan              | Total               |
|----|-------------------------------|---------------------|
|    |                               |                     |
| 1  | PEKERJAAN PERSIAPAN           | Rp17.800.265,00     |
| П  | PEKERJAAN PENGELAK            | Rp1.781.615.511,83  |
| Ш  | PEKERJAAN UTAMA               | Rp22.496.641.281,96 |
| IV | PEKERJAAN PELIMPAH            | Rp6.288.310.027,48  |
| V  | PEKERJAAN TOWER INTAKE        | Rp210.357.647,00    |
|    | TOTAL                         | Rp30.794.724.733,27 |
|    | PPN 10%                       | Rp3.079.472.473,33  |
|    | TOTAL + PPN 10%               | Rp33.874.197.206,60 |
|    | DIBULATKAN                    | Rp33.874.000.000,00 |
|    | TERBILANG                     |                     |
|    | Tiga Puluh Delapan Milyar Del | apan Ratus          |
|    | Tujuh Puluh Empat Juta Rupia  | h                   |

Pelaksanaan bendung direncanakan dengan waktu 73 minggu.

#### **KESIMPULAN DAN SARAN**

# Kesimpulan:

Debit banjir rencana Embung Tambakromo didasarkan pada perhitungan dan pengolahan data curah hujan, metode yang digunakan diantaranya adalah Metode Werduwen, Harsper, Rasional, dan Metode Hidrograf Satuan Sintetik Gamma I. Hasil perhitungan debit yang didapat digunakan Metode Hidrograf Satuan Sintetik Gamma I dengan debit banjir rencana periode ulang 1000 tahun sebesar 116,92 m³/detik.

Embung Tambakromo memiliki kapasitas tampungan 5.000.000 m³, dipergunakan sebagai suplai air baku untuk memenuhi kebutuhan kawasan industri di Kecamatan Tambakromo.

Dari data yang diperoleh dan hasil perhitungan konstruksi, embung yang direncanakan adalah tipe bendungan urugan tanah lempung, karena jenis tanah yang tersedia di sekitar embung adalah lempung. Elevasi puncak embung pada + 182,50 m. Dari hasil perhitungan dapat disimpulkan :

- 1. Tinggi embung direncanakan berdasarkan elevasi Muka Air Banjir (MAB) dan tinggi jagaan dengan tinggi total 20 m.
- 2. Berdasarkan perhitungan lebar mercu didapatkan lebar mercu embung sebesar 7,00 m.
- 3. Pelimpah banjir (*spillway*) untuk saluran pengarah aliran didapatkan lebar sebesar 15 m.
- 4. Tingkat Layanan untuk memenuhi kebutuhan air baku sebesar 70%.
- 5. Dari perhitungan didapatkan ukuran kolam olak adalah 10 m x 27,5 m, dengan USBR tipe II.
- 6. Urugan tanah untuk mendukung beban dari tubuh bendungan diambil dari tanah disekitar Embung Tambakromo, Kabupaten Pati.

#### Saran:

- 1. Untuk mendapatkan perhitungan desain yang benar-benar akurat, maka pemakaian metode perhitungan harus disesuaikan dengan kondisi yang ada. Disamping itu data-data yang digunakan dalam perhitungan juga haruslah dianalisis secara teliti dengan menggunakan berbagai macam teori yang ada.
- 2. Untuk memaksimalkan fungsi dari embung ini maka perlu diadakan penyuluhan terhadap masyarakat yang ada di sekitar.
- 3. Perlu pemeriksaan secara berkala terhadap kondisi konstruksi agar kerusakan-kerusakan yang akan terjadi dapat diantisipasi dengan cepat.
- 4. Pihak pengelola kawasan industri harus tetap menjaga kebersihan di lokasi industri ataupun di daerah sekitar embung agar tidak mengganggu kenyamanan masyarakat.

Agar embung berfungsi sesuai dengan yang diharapkan, maka hal yang harus diperhatikan adalah pemeliharaan yang dilakukan secara berkelanjutan dengan mengeruk sedimen setiap 5 tahun sekali.

#### DAFTAR PUSTAKA

Anggrahini. 2005. Hidrolika Saluran Terbuka. Srikandi, Surabaya.

Christady, Hary. 1998. Mekanika Tanah II. Penerbit Gadjah Mada University Press

Christady, Hary. 1996. Teknik Pondasi 1. Erlangga, Jakarta.

Departemen Pekerjaan Umum. 2006. Standar Perencanaan Bangunan Air.

Departemen Pekerjaan Umum. 1999. Panduan Perencanaan Bendungan Urugan Volume I (Survai dan Investigasi).

Departemen Pekerjaan Umum. 1999. Panduan Perencanaan Bendungan Urugan Volume II (Analisis Hidrologi).

Departemen Pekerjaan Umum. 1999. Panduan Perencanaan Bendungan Urugan Volume III (Desain Pondasi dan Tubuh Bendungan).

Departemen Pekerjaan Umum. 1999. Panduan Perencanaan Bendungan Urugan Volume IV (Desain Bangunan Pelengkap).

Departemen Pekerjaan Umum. 1999. Panduan Perencanaan Bendungan Urugan Volume V (Pekerjaan Hidromekanik, Instrumentasi dan Bangunan Pelengkap).

Direktorat Irigasi. 1986. Standar Perencanaan Irigasi. Galang Persada, Bandung.

Hindarko, S. 2002. Drainase Kawasan Daerah. Penerbit Esha, Jakarta.

Honing. 2003. Konstruksi Bangunan Air. Pradnya Paramita, Jakarta.

Joetata et. al. 1997. Irigasi dan Bangunan Air. Penerbit Gunadarma, Jakarta.

Kodoatie, R. J., Sjarief, R. 2005. Pengelolaan Sumber Daya air Terpadu. Penerbit Andi, Yogyakarta.

Kodoatie, R. J. 2002. Hidrolika Terapan. Penerbit Andi, Yogyakarta.

Loebis, Joesron. 1987. Banjir Rencana untuk bangunan Air. Badan Penerbit Pekerjaan Umum, Bandung.

Soedibyo. 2003. Teknik Bendungan. Pradnya Paramita, Jakarta.

Sosrodarsono, Suyono. 1983. Hidrologi untuk Pengairan. Pradnya Paramita, Jakarta.

Sosrodarsono, Suyono. 2002. Bendungan Type Urugan. Pradnya Paramita, Jakarta.

Sri Harto Br. 1993. Analisis Hidrologi. Gramedia Pustaka Utama, Jakarta.

Subarkah, Iman. 1980. Hidrologi Untuk Perencanaan Bangunan Air. Penerbit Idea Dharma, Bandung.

Suripin. 2001. Pelestarian Sumber Daya Tanah dan Air. Penerbit Andi, Yogyakarta.

Suripin. 2004. Sistem Drainase Perkotaan yang Berkelanjutan. Penerbit Andi, Yogyakarta

Triatmodjo, Bambang. 1996. Hidrolika I. Beta Offset, Yogyakarta.

Triatmodjo, Bambang. 1996. Hidrolika II. Beta Offset, Yogyakarta.