BibTex Citation Data :
@article{J.Gauss9550, author = {Vica Nurani and Sudarno Sudarno and Rita Rahmawati}, title = {PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung)}, journal = {Jurnal Gaussian}, volume = {4}, number = {3}, year = {2015}, keywords = {}, abstract = { National Exam is a measurement and assessment activities accession of national competency standards on specific subjects as well as a requirement that a student continue to pursue higher education. If we want to know the relationship between national exam score and semester score using multivariate linear regression analysis. Multivariate linear regression is the linear regression model with more than one response variables Y correlated and one or more predictor variables X. In the multivariate linear regression analysis, model selection is the important thing. This is because the selection of the best models in the multivariate linear regression analysis depends on the number of predictor variables involved in the model. The purpose of this study was to determine the best model in the multivariate linear regression analysis using the criteria of Mean Square Error (MSE). The result showed using MSE criterion obtained the best model with the smallest MSE value for 17424540 . The best model obtained consists of six predictor variables and four response variables. The effect from response to predictor is 74,512%. Keywords : National Exam, Multivariate Linear Regression, MSE Criterion, Best Model . Normal 0 false false false IN X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable \{mso-style-name:\"Table Normal\"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:\"\"; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:\"Calibri\",\"sans-serif\"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:\"Times New Roman\"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;\} National Exam is a measurement and assessment activities accession of national competency standards on specific subjects as well as a requirement that a student continue to pursue higher education. If we want to know the relationship between national exam score and semester score using multivariate linear regression analysis. Multivariate linear regression is the linear regression model with more than one response variables Y correlated and one or more predictor variables X. In the multivariate linear regression analysis, model selection is the important thing. This is because the selection of the best models in the multivariate linear regression analysis depends on the number of predictor variables involved in the model. The purpose of this study was to determine the best model in the multivariate linear regression analysis using the criteria of Mean Square Error (MSE). The result showed using MSE criterion obtained the best model with the smallest MSE value for 17424540 . The best model obtained consists of six predictor variables and four response variables. The effect from response to predictor is 74,512%. Keywords : National Exam, Multivariate Linear Regression, MSE Criterion, Best Model . Normal 0 false false false IN X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable \{mso-style-name:\"Table Normal\"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:\"\"; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:\"Calibri\",\"sans-serif\"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:\"Times New Roman\"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;\} }, issn = {2339-2541}, pages = {697--704} doi = {10.14710/j.gauss.4.3.697-704}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/9550} }
Refworks Citation Data :
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics