BibTex Citation Data :
@article{J.Gauss9484, author = {Novia Agustina and Suparti Suparti and Moch. Mukid}, title = {PEMODELAN DATA INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN REGRESI PENALIZED SPLINE}, journal = {Jurnal Gaussian}, volume = {4}, number = {3}, year = {2015}, keywords = {Indonesia Composite Index, Nonparametric Regression, Penalized Spline Regression, GCV, MAPE}, abstract = { Indonesia Composite Index (IHSG) is an indicator of stock price changes in Indonesia Stock Exchange. IHSG is time series data that can be modeled with parametric models. But there are some assumptions for parametric model, while the fluctuated IHSG data usually doesn’t occupy these assumptions. Another alternative for this study is nonparametric regression. Penalized spline regression is one of nonparametric regression method that can be used. The optimal penalized spline models depends on the determination of the optimal smoothing parameter λ and the optimal number of knots, that has a minimum value of Generalized Cross Validation (GCV). The best model in this study is penalized spline degree 1 (linear) with 1 knot, that is 5120,625, smoothing parameter λ value is 41590, and GCV value is 1567,203. R 2 value for in sample data is 83,2694% and R 2 value for out sample data is 96,4976% show that the model have a very good performance. MAPE values for in sample data is 0,5983% and MAPE values for out sample data is 0,4974%. Because the value of MAPE in sample and out sample is less than 10%, it means that the performance of the model and forecasting are very accurate. Keywords: Indonesia Composite Index, Nonparametric Regression, Penalized Spline Regression, GCV, MAPE }, issn = {2339-2541}, pages = {603--612} doi = {10.14710/j.gauss.4.3.603-612}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/9484} }
Refworks Citation Data :
Indonesia Composite Index (IHSG) is an indicator of stock price changes in Indonesia Stock Exchange. IHSG is time series data that can be modeled with parametric models. But there are some assumptions for parametric model, while the fluctuated IHSG data usually doesn’t occupy these assumptions. Another alternative for this study is nonparametric regression. Penalized spline regression is one of nonparametric regression method that can be used. The optimal penalized spline models depends on the determination of the optimal smoothing parameter λ and the optimal number of knots, that has a minimum value of Generalized Cross Validation (GCV). The best model in this study is penalized spline degree 1 (linear) with 1 knot, that is 5120,625, smoothing parameter λ value is 41590, and GCV value is 1567,203. R2 value for in sample data is 83,2694% and R2 value for out sample data is 96,4976% show that the model have a very good performance. MAPE values for in sample data is 0,5983% and MAPE values for out sample data is 0,4974%. Because the value of MAPE in sample and out sample is less than 10%, it means that the performance of the model and forecasting are very accurate.
Keywords: Indonesia Composite Index, Nonparametric Regression, Penalized Spline Regression, GCV, MAPE
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics