BibTex Citation Data :
@article{J.Gauss9477, author = {Kartikaningtiyas Saputri and Suparti Suparti and Abdul Hoyyi}, title = {PEMODELAN KURS RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT MENGGUNAKAN REGRESI PENALIZED SPLINE BERBASIS RADIAL}, journal = {Jurnal Gaussian}, volume = {4}, number = {3}, year = {2015}, keywords = {exchange rate; penalized spline; radial bases; penalized least square;generalized cross validation}, abstract = { Exchange rate is the price of a currency from a country that is measured or expressed in another country's currency. A country's currency exchange rate has fluctuated due to exchange rate determined by the demand and supply of the currency. One of method that can be used to predict the exchange rate is the classical time series analysis (parametric). However, the data exchange rate that fluctuates often do not fulfill the parametric assumptions. Alternative used in this research is penalized spline regression which is nonparametric regression and not related to the assumption of regression curves. Penalized spline regression is obtained by minimizing the function Penalized Least Square (PLS). To handle the numerical instability and changing data then used radial basis at Penalized spline estimator. Selection of the optimal models is rely heavily on determining the optimal lambda and optimal knot point that is based on the Generalized Cross Validation (GCV) minimum. Using data daily exchange rate of the rupiah against the US dollar in the period of June 2, 2014 until February 27, 2015, the optimal penalized spline bases on radial model in this study is when using 2 order and 13 knots point, those points are 11625; 11669; 11728; 11795; 11911; 11974; 12069; 12118; 12161; 12372; 12452; 12550; 12667 with GCV = 3904.8. Keywords : exchange rate, penalized spline, radial bases, penalized least square, generalized cross validation }, issn = {2339-2541}, pages = {533--541} doi = {10.14710/j.gauss.4.3.533-541}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/9477} }
Refworks Citation Data :
Exchange rate is the price of a currency from a country that is measured or expressed in another country's currency. A country's currency exchange rate has fluctuated due to exchange rate determined by the demand and supply of the currency. One of method that can be used to predict the exchange rate is the classical time series analysis (parametric). However, the data exchange rate that fluctuates often do not fulfill the parametric assumptions. Alternative used in this research is penalized spline regression which is nonparametric regression and not related to the assumption of regression curves. Penalized spline regression is obtained by minimizing the function Penalized Least Square (PLS). To handle the numerical instability and changing data then used radial basis at Penalized spline estimator. Selection of the optimal models is rely heavily on determining the optimal lambda and optimal knot point that is based on the Generalized Cross Validation (GCV) minimum. Using data daily exchange rate of the rupiah against the US dollar in the period of June 2, 2014 until February 27, 2015, the optimal penalized spline bases on radial model in this study is when using 2 order and 13 knots point, those points are 11625; 11669; 11728; 11795; 11911; 11974; 12069; 12118; 12161; 12372; 12452; 12550; 12667 with GCV = 3904.8.
Keywords: exchange rate, penalized spline, radial bases, penalized least square, generalized cross validation
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics