BibTex Citation Data :
@article{J.Gauss9476, author = {Izzudin Khalid and Suparti Suparti and Alan Prahutama}, title = {PEMODELAN REGRESI NONPARAMETRIK DATA LONGITUDINAL MENGGUNAKAN POLINOMIAL LOKAL (Studi Kasus: Harga Penutupan Saham pada Kelompok Harga Saham Periode Januari 2012 – April 2015)}, journal = {Jurnal Gaussian}, volume = {4}, number = {3}, year = {2015}, keywords = {Longitudinal Data; Local Polynomial; Stocks}, abstract = { Stocks are securities that can be bought or sold by individuals or institutions as a sign of participating or possessing a company in the amount of its proportions. From the lens of market capitalization values, stocks are divided into 3 groups: large capitalization (Big-Cap), medium capitalization (Mid-Cap) and small capitalization (Small-Cap). Longitudinal data is observation which is conducted as n subjects that are independent to each subject observed repeatedly in different periods dependently. Smoothing technique used to estimate the nonparametric regression model in longitudinal data is local polynomial estimator. Local polynomial estimator can be obtained by WLS (Weighted Least Square) methods. Local polynomial estimator is very dependent on optimal bandwidth. Determination of the optimal bandwidth can be obtained by using GCV (Generalized Cross Validation) method. Among the Gaussian kernel, Triangle kernel, Epanechnikov kernel and Biweight kernel, it is obtained the best model using Gaussian kernel. Based on the application of the model simultaneously, it is obtained coefficient of determination of 97,80174% and MSE values of 0,03053464. Using Gaussian kernel, MAPE out sample of data is obtained as 11,74493%. Keywords: Longitudinal Data, Local Polynomial, Stocks }, issn = {2339-2541}, pages = {527--532} doi = {10.14710/j.gauss.4.3.527-532}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/9476} }
Refworks Citation Data :
Stocks are securities that can be bought or sold by individuals or institutions as a sign of participating or possessing a company in the amount of its proportions. From the lens of market capitalization values, stocks are divided into 3 groups: large capitalization (Big-Cap), medium capitalization (Mid-Cap) and small capitalization (Small-Cap). Longitudinal data is observation which is conducted as n subjects that are independent to each subject observed repeatedly in different periods dependently. Smoothing technique used to estimate the nonparametric regression model in longitudinal data is local polynomial estimator. Local polynomial estimator can be obtained by WLS (Weighted Least Square) methods. Local polynomial estimator is very dependent on optimal bandwidth. Determination of the optimal bandwidth can be obtained by using GCV (Generalized Cross Validation) method. Among the Gaussian kernel, Triangle kernel, Epanechnikov kernel and Biweight kernel, it is obtained the best model using Gaussian kernel. Based on the application of the model simultaneously, it is obtained coefficient of determination of 97,80174% and MSE values of 0,03053464. Using Gaussian kernel, MAPE out sample of data is obtained as 11,74493%.
Keywords: Longitudinal Data, Local Polynomial, Stocks
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics