BibTex Citation Data :
@article{J.Gauss8402, author = {Rezzy Caraka and Hasbi Yasin and Alan Prahutama}, title = {PEMODELAN GENERAL REGRESSION NEURAL NETWORK (GRNN) PADA DATA RETURN INDEKS HARGA SAHAM EURO 50}, journal = {Jurnal Gaussian}, volume = {4}, number = {2}, year = {2015}, keywords = {GRNN; Jaringan Syaraf Tiruan; Return Saham; Indeks Euro 50; Kerugian Tertinggi; Profit Tertinggi; Prediksi}, abstract = { General Regression Neural Network (GRNN) merupakan salah satu model jaringan radial basis yang digunakan untuk pendekatan suatu fungsi. Model GRNN termasuk model jaringan syaraf tiruan dengan solusi yang cepat, karena tidak diperlukan iterasi yang besar pada estimasi bobot-bobotnya. Model ini memiliki arsitektur jaringan yang baku, dimana jumlah unit pada pattern layer sesuai dengan jumlah data input. Salah satu aplikasi GRNN adalah untuk memprediksi nilai return saham dari indeks Euro 50 CFD ( Contract For Difference ). Indeks Euro 50 CFD ( Contract For Difference ) digunakan sebagai patokan harga saham dari 50 perusahaan terbesar di zona Eropa. Para investor melakukan investasi di saham indeks Euro 50 CFD ( Contract For Difference ) dengan harapan mendapatkan kembali keuntungan yang sesuai dengan apa yang telah di investasikannya. Dengan menggunakan model GRNN diperoleh bahwa nilai RMSE dan R 2 untuk data training sebesar 0,00095 dan 99,19%. Untuk data testing diperoleh nilai RMSE dan R 2 sebesar 0,00725 dan 98,46%. Berdasarkan nilai prediksi return saham dua belas hari ke depan diperoleh kerugian tertinggi atau capital loss pada 15 Desember 2014 sebesar 5,583188% dan profit tertinggi atau capital gain pada tanggal 10 Desember 2014 sebesar 2,267641% Kata Kunci: GRNN, Jaringan Syaraf Tiruan, Return Saham, Indeks Euro 50, Kerugian Tertinggi, Profit Tertinggi, Prediksi }, issn = {2339-2541}, pages = {181--192} doi = {10.14710/j.gauss.4.2.181 - 192}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8402} }
Refworks Citation Data :
General Regression Neural Network (GRNN) merupakan salah satu model jaringan radial basis yang digunakan untuk pendekatan suatu fungsi. Model GRNN termasuk model jaringan syaraf tiruan dengan solusi yang cepat, karena tidak diperlukan iterasi yang besar pada estimasi bobot-bobotnya. Model ini memiliki arsitektur jaringan yang baku, dimana jumlah unit pada pattern layer sesuai dengan jumlah data input. Salah satu aplikasi GRNN adalah untuk memprediksi nilai return saham dari indeks Euro 50 CFD (Contract For Difference). Indeks Euro 50 CFD (Contract For Difference) digunakan sebagai patokan harga saham dari 50 perusahaan terbesar di zona Eropa. Para investor melakukan investasi di saham indeks Euro 50 CFD (Contract For Difference) dengan harapan mendapatkan kembali keuntungan yang sesuai dengan apa yang telah di investasikannya. Dengan menggunakan model GRNN diperoleh bahwa nilai RMSE dan R2 untuk data training sebesar 0,00095 dan 99,19%. Untuk data testing diperoleh nilai RMSE dan R2 sebesar 0,00725 dan 98,46%. Berdasarkan nilai prediksi return saham dua belas hari ke depan diperoleh kerugian tertinggi atau capital loss pada 15 Desember 2014 sebesar 5,583188% dan profit tertinggi atau capital gain pada tanggal 10 Desember 2014 sebesar 2,267641%
Kata Kunci: GRNN, Jaringan Syaraf Tiruan, Return Saham, Indeks Euro 50, Kerugian Tertinggi, Profit Tertinggi, Prediksi
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics