BibTex Citation Data :
@article{J.Gauss8098, author = {Agustifa Tazliqoh and Rita Rahmawati and Diah Safitri}, title = {PERBANDINGAN REGRESI KOMPONEN UTAMA DENGAN REGRESI RIDGE PADA ANALISIS FAKTOR-FAKTOR PENDAPATAN ASLI DAERAH (PAD) PROVINSI JAWA TENGAH}, journal = {Jurnal Gaussian}, volume = {4}, number = {1}, year = {2015}, keywords = {}, abstract = { Assuming violation multicollinearity in classical regression analysis can cause estimator resulting from classical model regression inefficient. Principal components regression and ridge regression are the methods that can be used to overcome the problem of multicollinearity. This research aimed to compare between the principal components regression with ridge regression to tackle the problem of multicollinearity in the analysis of the factors that affect revenue (PAD) of the Central Java province. The data used in this research are data revenue (PAD), and factors that affect the region, such as local tax, retribution, Gross Regional Domestic Products (GRDP) at current prices, Gross Regional Domestic Products (GRDP) at constant prices, population, regional spending. Based on the coefficient of determination value and test on individual regression coefficients, the value of variance inflation factor and correlations sufficiently high among some independent variables so we can conclude the existence of a violation of multicollinearity on analysis factors PAD. Based on standard error resulting from principal components regression and ridge regression show that principal components regression results in a standard smaller error. This shows that principal component regression is better than ridge regression in solving the problem multicollinearity on analysis of factors that affects pad province of central java. Keywords : Multicolinearity, revenue (PAD), Principal Component Regression, Ridge Regression, standard error }, issn = {2339-2541}, pages = {1--10} doi = {10.14710/j.gauss.4.1.1-10}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8098} }
Refworks Citation Data :
Assuming violation multicollinearity in classical regression analysis can cause estimator resulting from classical model regression inefficient. Principal components regression and ridge regression are the methods that can be used to overcome the problem of multicollinearity. This research aimed to compare between the principal components regression with ridge regression to tackle the problem of multicollinearity in the analysis of the factors that affect revenue (PAD) of the Central Java province. The data used in this research are data revenue (PAD), and factors that affect the region, such as local tax, retribution, Gross Regional Domestic Products (GRDP) at current prices, Gross Regional Domestic Products (GRDP) at constant prices, population, regional spending. Based on the coefficient of determination value and test on individual regression coefficients, the value of variance inflation factor and correlations sufficiently high among some independent variables so we can conclude the existence of a violation of multicollinearity on analysis factors PAD. Based on standard error resulting from principal components regression and ridge regression show that principal components regression results in a standard smaller error. This shows that principal component regression is better than ridge regression in solving the problem multicollinearity on analysis of factors that affects pad province of central java.
Keywords: Multicolinearity, revenue (PAD), Principal Component Regression, Ridge Regression, standard error
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics