PERBANDINGAN METODE KLASIFIKASI NAÏVE BAYES DAN K-NEAREST NEIGHBOR PADA ANALISIS DATA STATUS KERJA DI KABUPATEN DEMAK TAHUN 2012

Large population in Indonesia is closely related to the working status of the population which is unemployed or employed. It can lead to the high unemployment when the avaliable jobs arent balance with the population. Used two methods to perform the classification of employment status on the number of residents in the labor force in Demak for 2012 which is Naïve Bayes and K-Nearest Neighbor. Naïve Bayes is a classification method based on a simple probability calculation, while the K-Nearest Neighbor is a classification method based on the calculation of proximity. Variables used in determining whether a person's employment status is idle or not are gender, status in the household, marital status, education, and age. Employment status of the data processing methods of Naïve Bayes with the accuracy obtained is equal to 94.09% and the K-Nearest Neighbor method obtained is equal to 96.06% accuracy. To evaluate the results of the classification used calculations Press's Q and APER. Based on the analysis, the Press's Q values obtained indicate that both methods are already well in the classification of employment status data in Demak. Based on the calculation of APER, the classification of data in the employment status of Demak using the K-Nearest Neighbor method has an error rate smaller than the Naïve Bayes method. From this analysis it can be concluded that the K-Nearest Neighbor method works better compared with the Naïve Bayes for employment status data in the case of Demak for 2012.
Keywords : Classification, Naïve Bayes, K-Nearest Neighbor (K-NN), Classification evaluation
Article Metrics:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief)
Editorial Office of Jurnal Gaussian
Department of Statistics, Universitas Diponegoro
Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275
Telp./Fax: +62-24-7474754
Email: jurnalgaussian@gmail.com