BibTex Citation Data :
@article{J.Gauss8081, author = {Kiki Azriati and Abdul Hoyyi and Moch. Mukid}, title = {VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang)}, journal = {Jurnal Gaussian}, volume = {3}, number = {4}, year = {2014}, keywords = {}, abstract = { Forecasting method Box-Jenkins ARIMA (Autoregressive Integrated Moving Average) is a forecasting method that can provide a more accurate forecasting results. To verify the model obtained using the one Moving Range Chart. The control charts are used to determine the change in the pattern of file seen from the residual value (the difference between the actual file and the file forecasting). File used in this study the average wind speed in the Tanjung Emas harbor during January 2008 to December 2013. The best of Seasonal ARIMA model is ARIMA (0,0,1) (0,0,1) 12. The results of the verification using the Moving Range Control Chart on the model showed that all residual values are within control limits to the length of the shortest interval, means of verification results show that the model is a good model used for forecasting future periods. Forecasting is generated during the period of the next 15 shows the seasonal pattern. This is shown in the figure forecast 2014 average wind speeds are highest in January, as well as forecasting the 2015 figures the average speed of the highest winds also occurred in January. Forecasting results reflect past file, because the actual file used also showed a seasonal pattern with the same seasonal period is annual, where the numbers mean wind speeds are highest in January. Keywords : Seasonal ARIMA, Moving Range Control Chart, Mean wind speeds. }, issn = {2339-2541}, pages = {701--710} doi = {10.14710/j.gauss.3.4.701-710}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8081} }
Refworks Citation Data :
Forecasting method Box-Jenkins ARIMA (Autoregressive Integrated Moving Average) is a forecasting method that can provide a more accurate forecasting results. To verify the model obtained using the one Moving Range Chart. The control charts are used to determine the change in the pattern of file seen from the residual value (the difference between the actual file and the file forecasting). File used in this study the average wind speed in the Tanjung Emas harbor during January 2008 to December 2013. The best of Seasonal ARIMA model is ARIMA (0,0,1) (0,0,1) 12. The results of the verification using the Moving Range Control Chart on the model showed that all residual values are within control limits to the length of the shortest interval, means of verification results show that the model is a good model used for forecasting future periods. Forecasting is generated during the period of the next 15 shows the seasonal pattern. This is shown in the figure forecast 2014 average wind speeds are highest in January, as well as forecasting the 2015 figures the average speed of the highest winds also occurred in January. Forecasting results reflect past file, because the actual file used also showed a seasonal pattern with the same seasonal period is annual, where the numbers mean wind speeds are highest in January.
Keywords : Seasonal ARIMA, Moving Range Control Chart, Mean wind speeds.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics