BibTex Citation Data :
@article{J.Gauss8080, author = {Khusnul Widiyanti and Hasbi Yasin and Sugito Sugito}, title = {PEMODELAN PROPORSI PENDUDUK MISKIN KABUPATEN DAN KOTA DI PROVINSI JAWA TENGAH MENGGUNAKAN GEOGRAPHICALLY AND TEMPORALLY WEIGHTED REGRESSION}, journal = {Jurnal Gaussian}, volume = {3}, number = {4}, year = {2014}, keywords = {}, abstract = { Regression analysis is a statistical analysis that aims to quantify the effect of predictor variables on the response variable. Geographically Weighted Regression (GWR) is a local form of regression and a statistical method used to analyze spatial data. Geographically and Temporally Weighted Regression (GTWR) is the development of GWR models to handle data that is not stationary both in terms of spatial and temporal simultaneously. In obtaining estimates of parameters of the GTWR model can be used Weighted Least Square method (WLS). Selection of the optimum bandwidth used method of Cross Validation (CV). Conformance testing global regression and GTWR models approximated by the distribution of F, whereas the partial testing of the model parameters using the t distribution. Application GTWR models at the level of poverty in Central Java province in 2008 to 2012 showed GTWR models differ significantly from the global regression model. Based on R 2 and Mean Squared Error (MSE) value between the global regression model and GTWR models, it is known that the GTWR model with exponential weighting kernel function is the best model is used to analyze proportion of poor people in Central Java province in 2008 to 2012 because it has a value of R2 larger and MSE is the smallest. Keywords: Bandwidth, Cross Validation, Exponential Kernel Functions, Geographically and Temporally Weighted Regression, Weighted Least Square, R 2 , Mean Squared Error. }, issn = {2339-2541}, pages = {691--700} doi = {10.14710/j.gauss.3.4.691-700}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8080} }
Refworks Citation Data :
Regression analysis is a statistical analysis that aims to quantify the effect of predictor variables on the response variable. Geographically Weighted Regression (GWR) is a local form of regression and a statistical method used to analyze spatial data. Geographically and Temporally Weighted Regression (GTWR) is the development of GWR models to handle data that is not stationary both in terms of spatial and temporal simultaneously. In obtaining estimates of parameters of the GTWR model can be used Weighted Least Square method (WLS). Selection of the optimum bandwidth used method of Cross Validation (CV). Conformance testing global regression and GTWR models approximated by the distribution of F, whereas the partial testing of the model parameters using the t distribution. Application GTWR models at the level of poverty in Central Java province in 2008 to 2012 showed GTWR models differ significantly from the global regression model. Based on R2 and Mean Squared Error (MSE) value between the global regression model and GTWR models, it is known that the GTWR model with exponential weighting kernel function is the best model is used to analyze proportion of poor people in Central Java province in 2008 to 2012 because it has a value of R2 larger and MSE is the smallest.
Keywords: Bandwidth, Cross Validation, Exponential Kernel Functions, Geographically and Temporally Weighted Regression, Weighted Least Square, R2, Mean Squared Error.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics