BibTex Citation Data :
@article{J.Gauss6441, author = {Bisri Merluarini and Diah Safitri and Abdul Hoyyi}, title = {PERBANDINGAN ANALISIS KLASIFIKASI MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN) DAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) PADA DATA AKREDITASI SEKOLAH DASAR NEGERI DI KOTA SEMARANG}, journal = {Jurnal Gaussian}, volume = {3}, number = {3}, year = {2014}, keywords = {Classification, K-Nearest Neighbor (K-NN); Multivariate Adaptive Regression Spline (MARS); Classification evaluation}, abstract = { Classification methods have been developed and two of the existing are K-Nearest Neighbor (K-NN) and Multivariate Adaptive Regression Spline (MARS). The purpose of this research is comparing the classification of public elementary school accreditation in Semarang city with K-NN and MARS methods. This research using accreditation data with the result of eight accreditation components in public elementary school that has A accreditation (group 1) and B accreditation (group 2) in Semarang city. To evaluate the classification method used test statistic Press’s Q, APER, specificity, and sensitivity. The best classification results of the K-NN method is when using K=5 because it produces the smallest error rate and obtained information that the correct classification data are 159 and the misclassification data are 9. The best classification result of the MARS method is when using combination BF=32, MI=2, MO=1 because it produces the smallest Generalized Cross Validation (GCV) and obtained information that the correct classification data are 164 and the misclassification data are 4. Based on analyze result, Press’s Q showed that both methods are good as classification or statistically significant to classify the public elementary school in Semarang city based of the accreditation. APER, specificity, and sensitivity showed that classify of public elementary school accreditation in Semarang city using MARS method is better than K-NN method. }, issn = {2339-2541}, pages = {313--322} doi = {10.14710/j.gauss.3.3.313-322}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/6441} }
Refworks Citation Data :
Classification methods have been developed and two of the existing are K-Nearest Neighbor (K-NN) and Multivariate Adaptive Regression Spline (MARS). The purpose of this research is comparing the classification of public elementary school accreditation in Semarang city with K-NN and MARS methods. This research using accreditation data with the result of eight accreditation components in public elementary school that has A accreditation (group 1) and B accreditation (group 2) in Semarang city. To evaluate the classification method used test statistic Press’s Q, APER, specificity, and sensitivity. The best classification results of the K-NN method is when using K=5 because it produces the smallest error rate and obtained information that the correct classification data are 159 and the misclassification data are 9. The best classification result of the MARS method is when using combination BF=32, MI=2, MO=1 because it produces the smallest Generalized Cross Validation (GCV) and obtained information that the correct classification data are 164 and the misclassification data are 4. Based on analyze result, Press’s Q showed that both methods are good as classification or statistically significant to classify the public elementary school in Semarang city based of the accreditation. APER, specificity, and sensitivity showed that classify of public elementary school accreditation in Semarang city using MARS method is better than K-NN method.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics