BibTex Citation Data :
@article{J.Gauss5910, author = {Elyas Darmawan and Suparti Suparti and Moch. Mukid}, title = {PEMILIHAN MODEL REGRESI POLINOMIAL LOKAL DAN SPLINE UNTUK ANALISIS DATA INFLASI DI JAWA TENGAH}, journal = {Jurnal Gaussian}, volume = {3}, number = {2}, year = {2014}, keywords = {inflation; local polynomial; spline}, abstract = { Inflation becomes one of important problems as parameter of economic growth and determiner factor for government in formulating fiscal, monetary and nonmonetary policy. But, these days the policies were arranged can’t give the positive response to inflation pressure in the future. Therefore, the prediction of inflation rates are needed. Inflation rates are predicted by nonparametric regression approach because of the fluctuation of inflation which can’t be solved by classic time series models. In this research, the best nonparametric regression models are selected between local polynomial and spline regression to predict Central Java Inflation movement in 2014. Based on analysis, the best nonparametric regression is spline order 2, knot points are 5,37; 5,44; 5,59 and 9,01 with GCV 0,4367286. By using that model, the prediction of Central Java inflation got down since October 2013 until February 2014 on level 7% and March until December 2014 on level 6%. }, issn = {2339-2541}, pages = {223--231} doi = {10.14710/j.gauss.3.2.223 - 231}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/5910} }
Refworks Citation Data :
Inflation becomes one of important problems as parameter of economic growth and determiner factor for government in formulating fiscal, monetary and nonmonetary policy. But, these days the policies were arranged can’t give the positive response to inflation pressure in the future. Therefore, the prediction of inflation rates are needed. Inflation rates are predicted by nonparametric regression approach because of the fluctuation of inflation which can’t be solved by classic time series models. In this research, the best nonparametric regression models are selected between local polynomial and spline regression to predict Central Java Inflation movement in 2014. Based on analysis, the best nonparametric regression is spline order 2, knot points are 5,37; 5,44; 5,59 and 9,01 with GCV 0,4367286. By using that model, the prediction of Central Java inflation got down since October 2013 until February 2014 on level 7% and March until December 2014 on level 6%.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics