BibTex Citation Data :
@article{J.Gauss574, author = {David Yuliandar and Budi Warsito and Hasbi Yasin}, title = {PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI TURNAMEN UNTUK DATA TIME SERIES}, journal = {Jurnal Gaussian}, volume = {1}, number = {1}, year = {2012}, keywords = {peramalan time series, feed forward neural network, algoritma genetika, bobot, kurs}, abstract = { ABSTRAK Pemodelan time series seringkali dikaitkan dengan proses peramalan suatu nilai karakteristik tertentu pada periode mendatang. Salah satu metode peramalan yang berkembang saat ini adalah menggunakan artificial neural network atau yang lebih dikenal dengan neural network .Penggunaan neural network dalam peramalan time series dapat menjadi solusi yang baik, namun yang menjadi masalah adalah arsitektur jaringan dan pemilihan metode pelatihan yang tepat. Salah satu pilihan yang mungkin adalah menggunakan algoritma genetika. Algoritma genetika adalah suatu algoritma pencarian stokastik berdasarkan cara kerja melalui mekanisme seleksi alam dan genetik yang bertujuan untuk mendapatkan solusi dari suatu masalah. Algoritma ini dapat digunakan sebagai metode pembelajaran dalam melatih model feed forward neural network . Penerapan algoritma genetika dan neural network untuk peramalan time series bertujuan untuk mendapatkan bobot-bobot yang optimum dengan meminimumkan error . Dari hasil pelatihan dan pengujian pada data kurs Dolar Australia terhadap Rupiah didapatkan nilai RMSE sebesar 117.3599 dan 82.4917. Model ini baik untuk digunakan karena memberikan hasil prediksi yang cukup akurat yang ditunjukkan oleh kedekatan target dengan output. }, issn = {2339-2541}, pages = {65--72} doi = {10.14710/j.gauss.1.1.65-72}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/574} }
Refworks Citation Data :
ABSTRAK
Pemodelan time series seringkali dikaitkan dengan proses peramalan suatu nilai karakteristik tertentu pada periode mendatang. Salah satu metode peramalan yang berkembang saat ini adalah menggunakan artificial neural network atau yang lebih dikenal dengan neural network.Penggunaan neural network dalam peramalan time series dapat menjadi solusi yang baik, namun yang menjadi masalah adalah arsitektur jaringan dan pemilihan metode pelatihan yang tepat. Salah satu pilihan yang mungkin adalah menggunakan algoritma genetika. Algoritma genetika adalah suatu algoritma pencarian stokastik berdasarkan cara kerja melalui mekanisme seleksi alam dan genetik yang bertujuan untuk mendapatkan solusi dari suatu masalah. Algoritma ini dapat digunakan sebagai metode pembelajaran dalam melatih model feed forward neural network. Penerapan algoritma genetika dan neural network untuk peramalan time series bertujuan untuk mendapatkan bobot-bobot yang optimum dengan meminimumkan error. Dari hasil pelatihan dan pengujian pada data kurs Dolar Australia terhadap Rupiah didapatkan nilai RMSE sebesar 117.3599 dan 82.4917. Model ini baik untuk digunakan karena memberikan hasil prediksi yang cukup akurat yang ditunjukkan oleh kedekatan target dengan output.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics