skip to main content

Pemilihan Bandwidth Optimal pada Regresi Nonparametrik Kernel Menggunakan Metode Unbiased Risk (UBR)

*Muchni Illahi Efendi  -  Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh, Indonesia
I Nyoman Budiantara  -  Departemen Statistika, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, Indonesia
Vita Ratnasari  -  Departemen Statistika, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Nonparametric regression is used when the relationship pattern between the response and predictor variables is not clearly defined. Among several nonparametric regression approaches, the kernel method is commonly used. The selection of the optimal bandwidth is a key factor in kernel regression since it significantly affects the estimation accuracy. The optimal bandwidth selection can be obtained using the Unbiased Risk (UBR) method. The study aims to derive the mathematical formulation of the UBR method and evaluate its effectiveness in determining the optimal bandwidth for Indonesia’s 2024 economic growth rate data. The results indicate that the UBR method can be utilized in choosing the optimal bandwidth in nonparametric kernel regression for the economic growth rate data in Indonesia in 2024, producing bandwidths for each predictor of , and , with a minimum UBR of 2.827 and an MSE of 2.198. This implies that the nonparametric regression model with the optimal bandwidth obtained using the UBR method has good predictive capability with a relatively low estimation error for the economic growth rate data in Indonesia.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
COPYRIGHT TRANSFER AGREEMENT
Subject
Type Research Instrument
  Download (157KB)    Indexing metadata
Keywords: Bandwidth; Kernel; Nonparametric Regression; Unbiased Risk.

Article Metrics:

  1. Amrullah, Mn. and Hariksa Amalia, S. (2022) ‘Comparison Of Generalized Cross Validation (Gcv) Methods With Cross Validation (Cv) To Determine Optimal Knots In Fourier Series Nonparametric Regression (Case Study: Poverty Rate in North Sumatra Province)’, | Jurnal Litbang Edusaintech, 3(1), pp. 2022–2023. Available at: https://doi.org/10.51402/jle.v3i1.5
  2. Budiantara, I.N. (2019) Regresi nonparametrik spline truncated. Surabaya: ITS Press
  3. Chacon, J. and Duong, T. (2018) Multivariate kernel smoothing and its applications. Monographs on Statistics and Applied Probability, vol. 160
  4. Eubank, R.L. (1999) Nonparametric regression and spline smoothing. 2nd edn. New York: Marcel Dekker
  5. Hardle, W. (1994) Applied nonparametric regression. Berlin: Humboldt Universitat zu Berlin
  6. Hidayat, R., et al. (2019) ‘Kernel-Spline estimation of additive nonparametric regression model’, IOP Conference Series: Materials Science and Engineering, 546, 052028
  7. Huda, N. and Indahsari, K. (2021) ‘Pengaruh Rata-Rata Lama Sekolah, Angka Harapan Hidup Dan Pengeluaran Perkapita Terhadap Pertumbuhan Ekonomi Provinsi Jawa Timur Tahun 2014-2018’, Buletin Ekonomika Pembangunan, 2(1), pp. 55–66. Available at: https://doi.org/10.21107/bep.v2i1.13849
  8. Komang, I. et al. (2012) ‘Estimator Kernel Dalam Model Regresi Nonparametrik’, Jurnal Matematika, 2(1), pp. 20–30
  9. Kurnia, D.A. et al. (2025) ‘Metode unbiased risk diterapkan untuk pemilihan osilasi optimal dalam regresi nonparametrik menggunakan pendekatan deret fourier’, 14, pp. 139–148. Available at: https://doi.org/10.14710/j.gauss.14.1.139-148
  10. Lamusu, F., Machmud, T. and Resmawan, R. (2021) ‘Estimator Nadaraya-Watson dengan Pendekatan Cross Validation dan Generalized Cross Validation untuk Mengestimasi Produksi Jagung’, Indonesian Journal of Applied Statistics, 3(2), p. 85. Available at: https://doi.org/10.13057/ijas.v3i2.42125
  11. Pratiwi, L.P.S., Meina Ayuningsih, N.P. and Dwijayani, N.M. (2021) ‘Perbandingan Gcv Dan Ubr Dalam Regresi Nonparametrik Multivariabel’, Jurnal Matematika, 11(1), p. 64. Available at: https://doi.org/10.24843/jmat.2021.v11.i01.p137
  12. Pembargi, J.A., Hadijati, M. and Fitriyani, N. (2023) ‘Kernel Nonparametric Regression for Forecasting Local Original Income’, Jurnal Varian, 6(2), pp. 119–126. Available at: https://doi.org/10.30812/varian.v6i2.2585
  13. Sari, V.K. and Prasetyani, D. (2025) ‘Does Human Capital Matter for Indonesia’s Economic Growth?’, Jurnal Ekonomi Pembangunan, 22(2), pp. 291–302. Available at: https://doi.org/10.29259/jep.v22i2.23186
  14. Wang, Y. (2011) Smoothing Splines Methods and Applications. California: CRC Press
  15. Wulandary, S. And Purnama, D.I. (2020) ‘Perbandingan Regresi Nonparametrik Kernel Dan B-Splines Pada Pemodelan Rata-Rata Lama Sekolah Dan Pengeluaran Perkapita Di Indonesia’, Jambura Journal of Probability and Statistics, 1(2), pp. 89–97. Available at: https://doi.org/10.34312/jjps.v1i2.7501

Last update:

No citation recorded.

Last update:

No citation recorded.