BibTex Citation Data :
@article{J.Gauss52003, author = {Panji Arifa and Kusman Sadik and Agus Soleh and Cici Suhaeni}, title = {OPTIMASI XGBOOST DALAM PREDIKSI KECEPATAN KENDARAAN SECARA REAL-TIME : PERBANDINGAN METODE TUNING HYPERPARAMETER}, journal = {Jurnal Gaussian}, volume = {15}, number = {1}, year = {2026}, keywords = {Xgboost; Hyperparameter Tuning; Grid Search; Bayesian Optimization; Genetic Algorithms}, abstract = { Real-time vehicle speed prediction plays a vital role in the development of intelligent transportation systems aimed at improving traffic flow and safety. This study investigates the performance of the XGBoost algorithm enhanced with three hyperparameter tuning techniques: Grid Search, Bayesian Optimization, and Genetic Algorithm. A simulated dataset was constructed reflect diverse urban traffic scenarios, incorporating environmental variables such as weather, road conditions, and traffic density. The models were assessed using 5 and 10-fold cross-validation based on prediction metrics (MSE, RMSE, MAE and R²) as well as computational efficiency in terms of training and inference time. The findings reveal that Bayesian Optimization achieves the highest prediction accuracy, while Grid Search offers the fastest training time. Genetic Algorithm demonstrates a balanced trade-off between accuracy and computational efficiency, making it a competitive and practical choice. These results highlight the importance of selecting hyperparameter tuning strategies based on specific system needs in real-time traffic prediction using XGBoost. }, issn = {2339-2541}, pages = {01--11} doi = {10.14710/j.gauss.15.1.01-11}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/52003} }
Refworks Citation Data :
Real-time vehicle speed prediction plays a vital role in the development of intelligent transportation systems aimed at improving traffic flow and safety. This study investigates the performance of the XGBoost algorithm enhanced with three hyperparameter tuning techniques: Grid Search, Bayesian Optimization, and Genetic Algorithm. A simulated dataset was constructed reflect diverse urban traffic scenarios, incorporating environmental variables such as weather, road conditions, and traffic density. The models were assessed using 5 and 10-fold cross-validation based on prediction metrics (MSE, RMSE, MAE and R²) as well as computational efficiency in terms of training and inference time. The findings reveal that Bayesian Optimization achieves the highest prediction accuracy, while Grid Search offers the fastest training time. Genetic Algorithm demonstrates a balanced trade-off between accuracy and computational efficiency, making it a competitive and practical choice. These results highlight the importance of selecting hyperparameter tuning strategies based on specific system needs in real-time traffic prediction using XGBoost.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics