BibTex Citation Data :
@article{J.Gauss3810, author = {Nurwihda Umami and Dwi Ispriyanti and Tatik Widiharih}, title = {APLIKASI MODEL REGRESI POISSON TERGENERALISASI PADA KASUS ANGKA KEMATIAN BAYI DI JAWA TENGAH TAHUN 2007}, journal = {Jurnal Gaussian}, volume = {2}, number = {4}, year = {2013}, keywords = {Infant Mortality Rate; Poisson Regression; Overdispersion; Generalized Poisson Regression; AIC}, abstract = { Infant Mortality is one of the issues that can affect the number and age composition of the population. The Government pays special attention to reduce the amount of Infant Mortality Rate in Central Java, so the role of data and information becomes very important. Poisson regression is a nonlinear regression which is often used to model the relationship between the response variable in the form of discrete data with predictor variables in the form of continuous or discrete data. Poisson regression models have equidispersi assumption, a condition in which the mean and variance of the response variable have equal value. In practice, the assumption is sometimes violated in the analysis of discrete data in the form of overdispersi (value of variance greater than the mean value) so that Poisson regression model is not appropriate to be used. Overdispersi is a condition in which the data of response variable shows. One model that can be used to solve the overdispersi problem is generalized Poisson regression model. The regression model is an extension of the Poisson regression and part of the Generalized Linear Model (GLM) which does not require constancy of variance to test the hypothesis. From the data of Infant Mortality Rate in Central Java on 2007 known that there overdispersi. And the factors affecting Infant Mortality Rate is the number of health facilities, the number of medical personnel, and the percentage of households with clean water each county / city. }, issn = {2339-2541}, pages = {361--368} doi = {10.14710/j.gauss.2.4.361 - 368}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/3810} }
Refworks Citation Data :
Infant Mortality is one of the issues that can affect the number and age composition of the population. The Government pays special attention to reduce the amount of Infant Mortality Rate in Central Java, so the role of data and information becomes very important. Poisson regression is a nonlinear regression which is often used to model the relationship between the response variable in the form of discrete data with predictor variables in the form of continuous or discrete data. Poisson regression models have equidispersi assumption, a condition in which the mean and variance of the response variable have equal value. In practice, the assumption is sometimes violated in the analysis of discrete data in the form of overdispersi (value of variance greater than the mean value) so that Poisson regression model is not appropriate to be used. Overdispersi is a condition in which the data of response variable shows. One model that can be used to solve the overdispersi problem is generalized Poisson regression model. The regression model is an extension of the Poisson regression and part of the Generalized Linear Model (GLM) which does not require constancy of variance to test the hypothesis. From the data of Infant Mortality Rate in Central Java on 2007 known that there overdispersi. And the factors affecting Infant Mortality Rate is the number of health facilities, the number of medical personnel, and the percentage of households with clean water each county / city.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics