skip to main content

PEMODELAN DAN PREDIKSI HARGA SAHAM PERUSAHAAN FAST MOVING CUSTOMER GOODS MENGGUNAKAN VECTOR AUTOREGRESSIVE WITH EXOGENOUS VARIABLES (VARX)

*Marya Magdalena Simanjuntak  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The increase in the population of Indonesia causes consumption to increase. This has made the FMCG (Fast Moving Consumer Goods) industry in Indonesia grow rapidly and occupy the second largest proportion of market capitalization thereby attracting investors to invest. One way to choose the best stocks to invest is by modeling. Modeling is carried out on the share price of companies with large capitalization, namely Mayora Indah, Indofood CBP, and Siantar Top. One of the factors that influence a company's stock price is the stock price of a competitor, namely Unilever and Buyung Poetra. Therefore, to predict and determine the relationship between stocks, the VARX (Vector Autoregressive with Exogenous Variables) method is used. The data period in this study starts from January 4, 2021 to January 14, 2022 with the results of the analysis, namely VARX (1) is the model obtained for prediction. The errors from the model meet the white noise and multinormal assumptions. The SMAPE value of the Mayora, Indofood CBP, and Siantar Top variables is below 10% which means the model has very good predictive ability. In addition, the prediction results show that Indofood's share price is more stable than other stocks.

 

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (275KB)    Indexing metadata
Keywords: Stock; FMCG; VARX; SMAPE

Article Metrics:

  1. Cryer, J. 1986. Time Series Analysis. Boston: PWS-KENT Publishing Company
  2. Fahmi, I. 2012. Analisis Laporan Keuangan. Bandung: Alfabeta
  3. Halimi, Anggraeni, dan Tyasnurita. 2013. Pembuatan Aplikasi Peramalan Jumlah Permintaan Produk dengan Metode Time Series Exponential Smoothing Holts Winter di PT. Telekomunikasi Indonesia Tbk. Institut Teknologi Sepuluh Nopember. Jurnal Teknik POMITS Vol.1, No. 1, Hal: 1-6
  4. Lutkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York:
  5. Springer
  6. Makridakis, S. dan Hibbon, M. 2000. The M3-Competition: Result, Conclusion and Implications. International Journal of Forecasting. Vol.16, No. 4, Hal:451-476
  7. Ocampo, S. dan Rodriguez, N. 2012. An Introductory Review of a Structural VAR-X
  8. Estimation and Applications. Revista Colombiana de Estadistica Vol. 35, No. 3, Hal:
  9. -508
  10. Okky, D. dan Setiawan. 2012. Permodelan Indeks Harga Saham Gabungan (IHSG), Kurs, dan Harga Minyak Dunia dengan Pendekatan Vector Autoregressive. Jurnal Sains dan Seni ITS Vol. 1, No.1, Hal, 87-92
  11. Pongiannan, K. dan Chinnasamy, J. 2014. Do advertisements for fast moving consumer
  12. goods create response among the consumers?-an analytical assessment with reference
  13. to India. International Journal of Innovation, Management and Technology Vol. 5, No
  14. , Hal: 249-254
  15. Pratama, R.I.H. dan Saputro, D.R.S. 2018. Model Runtun Waktu Vector Autoregressive
  16. Moving Average With Exogenous Variable (VARMAX). Prosiding Konferensi
  17. Nasional Penelitian Matematika dan Pembelajarannya: 24 Maret 2018
  18. Rosadi, D. 2012. Ekonometrika dan Analisis Runtun Waktu Terapan dengan EViews. Yogyakarta : Penerbit Andi Offset
  19. Tsay, R.S. 2014. Multivariate Time Series Analysis. Chicago: John Wiley, Inc
  20. Wei, W.W.S. 2006. Time Series Analysis Univariate and Multivariate Method. Canada
  21. Addison Wesley Publishing Company, Inc
  22. Widarjono, A. 2005. Ekonometrika Teori dan Aplikasi untuk Ekonomi dan Bisnis. Buku
  23. Pertama, Edisi Pertama, Ekonisia. Yogyakarta: Universitas Islam Indonesia
  24. Zadrozny, P. A., dan Chen, B. 2019. Weighted-Covariance Factor Decomposition of
  25. Varma Models Applied to Forecasting Quarterly U.S. Real GDP at Monthly Intervals
  26. Journal of Time Series Analysis Vol. 40, No. 6, Hal. 968–986

Last update:

No citation recorded.

Last update:

No citation recorded.