skip to main content

ANALISIS VOLATILITAS BITCOIN MENGGUNAKAN MODEL ARCH DAN GARCH

*Dheanisa Widyanti  -  Department of Statistics, Universitas Diponegoro, Indonesia
sudarno sudarno  -  Departemen statistika, Universitas Diponegoro, Indonesia
Tatik widiharih  -  Departemen statistika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The popularity of Bitcoin increased significantly in 2021. Bitcoin is considered to deliver high returns in a relatively short period, indicating that bitcoin has high volatility. Data with high volatility usually violates the Autoregresstive IntegratedinMovinginAverage (ARIMA)in homoscedasticity assumption. The Autoregressive Conditional Heteroscedasticity (ARCH) and General Autoregressive Conditional Heteroscedasticity (GARCH) model is often used to overcome the problem of heteroscedasticity in thelARIMA model. The ARCH and GARCH models canfbe used to model thefvolatilityfof data. This Research uses ARCH and GARCH models to overcome the heteroscedasticity problem caused by the high volatility of Bitcoin data for the period 30th June 2018 to 30th June 2022. The results of this study suggest that there might be a heteroscedasticity problem in Bitcoin data. The bestffiimodel for Bitcoin data ismiARIMA(1,0,[4])-GARCH(1,1) with an AIC value of -1,4263 at a 95% confidence level
Fulltext View|Download
Keywords: Bitcoin; Return; Heteroscedasticity; ARCH; GARCH; ARIMA

Article Metrics:

  1. Almansour, B. Y., Muneer M. A., dan Ammar Y. A. 2021. Performance of ARCH and GARCH Models in Forecasting Cryptocurrency Market Volatility. Industrial Enginering & Management System Vol.20, No. 2: Hal. 130-139. https://doi.org/10.7232/iems.2021.20.2.130
  2. Bollerslev, T. 1986. Generelized Autoregressive Conditional Heteroscedasticity. Journal of Economy Vol. 31, No. 3: Hal. 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  3. Cryer, J.D. dan Kung S. C. 2008. Time Series Analysis With Applications in R. Edisi 2. New York: Springer
  4. Daly, K. 2008. Financial Volatility: Issues and Measuring Techniques. Physica A: Statistical Mechanics and its Application Vol. 387, No. 11: Hal. 2377-2393. https://doi.org/10.1016/j.physa.2008.01.009
  5. Engle, R. F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kongdom Inflation. Econometrica Vol. 50, No. 4: Hal. 987-1007. https://doi.org/10.2307/1912773
  6. Hayes, A. 2021. Volatility. https://www.investopedia.com/terms/v/volatility.asp
  7. Hyndman, R.J. dan George A. 2018. Forecasting: Principles and Practice. Edisi 2. Melbourne, Australia: Otexts. https://otexts.com/fpp2/
  8. Katsiampa, P. 2017. Volatility Estimation for Bitcoin: A Comparison of GARCH Model. Economics Letters Vol. 158: Hal. 3-6. https://doi.org/10.1016/j.econlet.2017.06.023
  9. Khairunnisa, D. E., Budi P., dan Wita J. E. 2022. Currency Risk Analysis During the Covid-19 Pandemic: Value at Risk (VaR) Approach. Jurnal Manajemen dan Organisasi (JMO) Vol.13, No.1: Hal. 61-73. https://doi.org/10.29244/jmo.v13i1.40428
  10. Makridakis, S., Wheelwright, S. C., Hyndman, R. J. 1998. Forecasting: Methode and Applications. Edisi 3. New York: John Willey & Sons, Inc
  11. Naimy, V., O., Gema G., E. dan Rim E. K. 2021. The Predictive Capacity of GARCH-type Models in Measuring The Volatility of Crypto and Word Currencies. PLoS ONE Vol. 16, No. 1: Hal. 1-17. https://doi.org/10.1371/journal. pone.0245904
  12. Ngunyi, A., Mundia, S. M., dan Cyprian O. O. 2019. Modelling Volatility Dynamics of Cryptocurrencies Using GARCH Models. Journal of Mathematical Finance Vol. 9, No. 4: Hal. 591-615. https://doi.org/10.4236/jmf.2019.94030
  13. Saluza, I. 2017.Model Estimasi GARCH dalam Mengukur Kinerja Nilai Tukar Rupiah. Eksakta Vol. 18, No. 2: Hal. 52-61. https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/53
  14. Tomšik, R. 2019. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov and Jarque-Bera Tests. Scholars Journal of Research in Mathematics and Computer Science
  15. Vol. 3, No. 3: Hal. 238-243. https://www.scischolars.com/journals/index.php/sjrmcs/article/download/248/pdf
  16. Wei, W.W.S. 2006. Time Series Analysis: Univariate and Multivariate Methods. Edisi 2. New York: Pearson Addison Wesley

Last update:

No citation recorded.

Last update:

No citation recorded.