BibTex Citation Data :
@article{J.Gauss35278, author = {Khalifah Reihanah and Di Asih I Maruddani and Tatik Widiharih}, title = {CLUSTERING KARAKTERISTIK INDUSTRI KECIL DAN MENENGAH DI KOTA KENDARI MENGGUNAKAN ALGORITMA k-PROTOTYPES}, journal = {Jurnal Gaussian}, volume = {12}, number = {3}, year = {2024}, keywords = {IKM; Mixed-Type Data; Numerical-Typed Data, Categorical-Type Data); Cluster Analysis; k-Prototypes Clustering; Silhouette Index.}, abstract = {Industri Kecil Menengah (IKM) have important roles in economic development. The large number of IKM cannot be separated from various problems. The basic problems faced by IKM in Kendari are limited capital, inadequate human resources, difficulty in obtaining raw materials, and the Indonesian economy which has slumped due to the impact of the COVID-19 pandemic. This research was conducted with the aim of classifying the characteristics of the IKM with the optimal number of clusters. The method used is k-Prototypes Clustering with values of k = 2, 3, 4, ..., and 10. The k-Prototypes method is a clustering method that maintains the efficiency of the k-Means algorithm in handling large data when compared to the hierarchical clustering method. This method can group mixed type data (consisting of numeric type data and categorical type data). Based on the analysis, the optimal number of clusters is five clusters, with a Silhouette Index value of 0.461. Cluster 5 is the best IKM cluster with the highest average number of workers and the highest average investment value, while cluster 2 has the lowest average investment value and IKM in this cluster is relatively new compared to IKM in other clusters.}, issn = {2339-2541}, pages = {340--351} doi = {10.14710/j.gauss.12.3.340-351}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/35278} }
Refworks Citation Data :
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics