BibTex Citation Data :
@article{J.Gauss30958, author = {Aprilia Khinanti and Sudarno Sudarno and Triastuti Wuryandari}, title = {MODEL REGRESI COX PROPORTIONAL HAZARD PADA DATA KETAHANAN HIDUP PASIEN HEMODIALISA}, journal = {Jurnal Gaussian}, volume = {10}, number = {2}, year = {2021}, keywords = {Cox Regression ,Survival, Ties, Hemodialysis.}, abstract = { Cox regression is a type of survival analysis that can be implemented with proportional hazard models or duration models. In the survival analysis data, there is a possibility that the data has ties, so it is necessary to use several approaches in estimating the parameters, namely the breslow, efron, and exact approaches. In this study, the Cox proportional hazard regression was used as a method of analysis for knowing the factors that influence the survival time on chronic kidney patients undergoing hemodialysis therapy. Based on the analysis that has been done, the best model is obtained with an exact approach and the factors that influence the survival time of hemodialysis patients are systolic blood pressure, hemoglobin level, and dialysis time. Hemodialysis patients who have high systolic blood pressure have a chance of failing to survive 12,950 times than normal systolic blood pressure.While the hemodialysis patient hemoglobin level increases, the hemodialysis patients chances of failing to survive is 0,6681 times less. Hemodialysis patients who received dialysis therapy with a dialysis time of more than four hours had 0.237 times the chance of failing to survive than patients with a dialysis time of less than or equal to 4 hours. Keywords : Cox Regression ,Survival, Ties, Hemodialysis . }, issn = {2339-2541}, pages = {303--314} doi = {10.14710/j.gauss.10.2.303-314}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/30958} }
Refworks Citation Data :
Cox regression is a type of survival analysis that can be implemented with proportional hazard models or duration models. In the survival analysis data, there is a possibility that the data has ties, so it is necessary to use several approaches in estimating the parameters, namely the breslow, efron, and exact approaches. In this study, the Cox proportional hazard regression was used as a method of analysis for knowing the factors that influence the survival time on chronic kidney patients undergoing hemodialysis therapy. Based on the analysis that has been done, the best model is obtained with an exact approach and the factors that influence the survival time of hemodialysis patients are systolic blood pressure, hemoglobin level, and dialysis time. Hemodialysis patients who have high systolic blood pressure have a chance of failing to survive 12,950 times than normal systolic blood pressure.While the hemodialysis patient hemoglobin level increases, the hemodialysis patients chances of failing to survive is 0,6681 times less. Hemodialysis patients who received dialysis therapy with a dialysis time of more than four hours had 0.237 times the chance of failing to survive than patients with a dialysis time of less than or equal to 4 hours.
Keywords: Cox Regression ,Survival, Ties, Hemodialysis.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics