slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PEMODELAN GEOGRAPHICALLY WEIGHTED GENERALIZED POISSON REGRESSION (GWGPR) PADA KASUS KEMATIAN IBU NIFAS DI JAWA TENGAH | Sabtika | Jurnal Gaussian skip to main content

PEMODELAN GEOGRAPHICALLY WEIGHTED GENERALIZED POISSON REGRESSION (GWGPR) PADA KASUS KEMATIAN IBU NIFAS DI JAWA TENGAH

*Wahyu Sabtika  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Alan Prahutama  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Maternal mortality is one indicator to describing prosperity in a country and indicator of women's health. Most of the maternal mortality caused by postpartum maternal mortality. The number of postpastum maternal mortality is events that the probability of the incident is small, where the incident depending on a certain time or in a certain regions with the results of the observation are variable diskrit and between variable independent each other that follows the Poisson distribution, so that the proper statistical method is Poisson regression. However, in Poisson regression model analysis sometimes assumptions can occur violations, where the value of variance is greater than the mean value called overdispersion. Generalized Poisson Regression (GPR) is one model that can be used to handle overdispersion problems. This modeling produces global parameters for all locations (regions), so to overcome this we need a method of statistical modeling with due regard to spatial factors. The analytical method used to determine the factors that influence the number of postpartum maternal mortality in Central Java that have overdispersion and there are spatial factors, is Geographically Weighted Generalized Poisson Regression (GWGPR) using the Maximum Likelihood Estimation method and Adaptive Bisquare weighting. Poisson regression and GPR modeling produces a variable percentage of pregnant women doing K1 which has a significant effect on the number of postpartum maternal mortality, while for GWGPR modeling is divided into four cluster in all regency/city in Central Java based on the same significant variable. From the comparison of AIC values, it was found that the GWGPR model is better for analyzing postpartum maternal mortality in Central Java because it has the smallest AIC value.

Keywords: The Number of Postpartum Maternal Mortality, Overdispersion, Generalized Poisson Regression, Spatial, Geograpically Weighted Generalized Poisson Regression, AIC

Fulltext View|Download
Keywords: The Number of Postpartum Maternal Mortality, Overdispersion, Generalized Poisson Regression, Spatial, Geograpically Weighted Generalized Poisson Regression, AIC

Article Metrics:

  1. Bahiyatun. 2008. Buku Ajar Asuhan Kebidanan Nifas Normal. Jakarta: Penerbit Buku Kedokteran EGC
  2. [Bappenas] Badan Perencanaan Pembangunan Nasional. 2014. Rencana Pembangunan Jangka Menengah Nasional 2015-2019: Buku I Agenda Pembangunan Nasional. Jakarta: Badan Perencanaan Pembangunan Nasional
  3. Bozdogan, H. 2000. Akaike's Information Criterion and Recent Developments in Information Complexity. Mathematical Psychology
  4. Cameron, A.C. dan Trivedi, K.P. 1998. Regression Analysis of Count Data.USA: Cambridge University Press
  5. Da Silva, A. R., da Mendes, F. F. 2018. On Comparing Some Algorithms for Fiding the Optimal Bandwidth in Geographically Weighted Regression. Applied Soft Computing Journal. 73. 943-957
  6. [Dinkes Jateng] Dinas Kesehatan Provinsi Jawa Tengah. 2018. Profil Kesehatan Provinsi Jawa Tengah Tahun 2017. Semarang: Dinas Kesehatan Provinsi Jawa Tengah
  7. Fotheringham, A.S., Brudson, C., dan Charlton, M. 2002. Geographically Weighted Regression. Analysis os Spatial Varying Relationship. John Wiley and Sons Ltd: England
  8. [Kemenkes RI] Kementerian Kesehatan Republik Indonesia. 2017. Profil Kesehatan Indonesia Tahun 2016. Jakarta: Republik Indonesia
  9. McCullagh, P. dan J.A. Nelder. 1989. Generalized Linear Models. Second Edition. New York: Chapman and Hall
  10. Myers, M. V. 1990. Generalized Linear Model with Applications in Engineering and Sciences,2th Edition.New Jersey: John Wiley & Sons
  11. Wang, W. dan Famoye, F. 1997. Modeling household fertility decision with generalized Poisson regression. Journal of Population Economics, 10, 3, 273283

Last update:

No citation recorded.

Last update:

No citation recorded.