slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PEMODELAN AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE DENGAN EFEK EXPONENTIAL GARCH (ARFIMA-EGARCH) UNTUK PREDIKSI HARGA BERAS DI KOTA SEMARANG | Hanifa | Jurnal Gaussian skip to main content

PEMODELAN AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE DENGAN EFEK EXPONENTIAL GARCH (ARFIMA-EGARCH) UNTUK PREDIKSI HARGA BERAS DI KOTA SEMARANG

*Rezky Dwi Hanifa  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Mustafid Mustafid  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Time series data is a type of data that is often used to estimate future values. Long memory phenomenon often occurs in time series data. Long memory is a condition that shows a strong correlation between observations even though they are quite far away. This phenomenon can be overcome by modeling time series data using the Autoregressive Fractional Integrated Moving Average (ARFIMA) model. This model is characterized by a fractional difference value. ARFIMA (Autoregressive Fractional Integrated Moving Average) model assumes that the residuals are normally distributed, mutually independent, and homogeneous. However, usually in financial data, the residual variants are not constant. This can be overcome by modeling variants. Standard equipment that can be used to model variants is the ARCH / GARCH (Auto Regressive Conditional Heteroscedasticity / Generalized Auto Regressive Conditional Heteroscedasticity) model. Another phenomenon that often occurs in GARCH models is the leverage effect on the residuals of the model. EGARCH (Exponential General Auto Regessive Conditional Heteroscedasticity) is a development of the GARCH model that is appropriate for data that has an leverage effect. The implementation of this model is by modeling financial data, so this study takes 136 monthly data on rice prices in Semarang City from January 2009 to April 2020. The purpose of this study is to create a long memory data forecasting model using the Exponential method. Generalized Autoregressive Conditional Heteroscedasticity (EGARCH). The best model obtained is ARFIMA (1, d, 1) EGARCH (1,1) which is capable of forecasting with a MAPE value of 3.37%.

Keyword : Rice price, forecasting , long memory, leverage effect, GARCH, EGARCH

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Autoregressive Fractionally Integrated Moving Average with Exponential GARCH Effect (ARFIMA-EGARCH) to Predict Rice Price on Semarang City
Subject
Type Research Instrument
  Download (52KB)    Indexing metadata
Keywords: Rice price, forecasting , long memory, leverage effect, GARCH, EGARCH

Article Metrics:

  1. Ekananda, M. 2014. Analisis Data Time Series untuk Penelitian Ekonomi, Manajemen, dan Akuntansi. Jakarta : Mitra Wacana Media
  2. Kartikasari, P. 2015. Studi Simulasi Pengaruh Outlier terhadap Pengujian Linieritas dan Long Memory beserta Aplikasinya pada Data Return Saham. Tesis. Surabaya : Institut Teknologi Sepuluh Nopember
  3. Makridakis, S., Wheelwright, S.C., dan McGree, V.E. 1999. Metode dan Aplikasi Peramalan. Edisi kedua. Jilid 1. Jakarta : Binarupa Aksara
  4. Montgomery, D.C., Jennings, C.L., dan Kulahci, M. 2008. Introduction to Time Series Analysis and Forecasting. Canada : John Wiley & Sons Inc
  5. Box, G.E.P., and Jenkins, G.M. 1976. Time Series Analysis Forecasting and Control. Second Edition. Holden-Day, San Fransisco
  6. Wei, W. W.S. 2006. Time Series Analysis : Univariate and Multivariate Methods. Amerika : Pearson Education, Inc
  7. Qian, B. dan Rasheed, K. 2004. Hurst Exponent and Financial Market Predictibility. Proceedings of 2nd IASTED International Conference on Financial Engineering and Applications. Cambridge, MA, USA
  8. Tagliafichi, R.A. 2003. The Estimation oaf Market Var Using Garch Models and A Heavy Tail Distributions. Argentina : University of Buenos A ires
  9. Paridi. 2019. Perbandingan Metode ARIMA(Box Jenkins), ARFIMA, Regresi Spktral dan SSA dalam Peramalan Jumlah Kasus Demam Berdarah Dengue di Rumah Sakit Hasan Sadikin Bandung. Jurnal Ilmu Sosial dan Ilmu Politik Vol. 2, No. 1 : Hal. 243-258

Last update:

No citation recorded.

Last update:

No citation recorded.