skip to main content

PENGELOMPOKAN TITIK GEMPA DI PULAU SULAWESI MENGGUNAKAN ALGORITMA ST-DBSCAN (Spatio Temporal-Density Based Spatial Clustering Application with Noise)

*Denny Jales Manalu  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rita Rahmawati  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Earthquake is a natural disaster which is quite serious in Indonesia, especially on Sulawesi Island. Earthquake is fearful because it can’t be predicted when it will come, where it will come, and how strong the vibration, that often causes fatal damage and casualties. In effort to minimize losses caused by earthquake, it is necessary to divide areas which are easily affected by earthquake. One of the methods that can be used in dividing the area is by using the clustering technique. This research by using a clustering method with the ST-DBSCAN (Spatial Temporal-Density Based Spatial Clustering Application with Noise) algorithm on dataset of earthquake points in Sulawesi Island in 2019. This method by using the spatial distance parameters (Eps1 = 0.45), the temporal distance parameters (Eps2 = 7), and minimum number of cluster members (MinPts = 4), resulting in a total of 60 clusters with 8 large clusters and 216 noises

 

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (15KB)    Indexing metadata
Keywords: Data mining, earthquake, clustering, spatio-temporal, ST-DBSCAN

Article Metrics:

  1. Birant, D. & Kut, A., 2007. ST-DBSCAN: An Algorithm for Clustering Spatial-
  2. temporal data. Data and Knowledge Engineering, pp. 60:208-221
  3. Gaonkar, M. N. & Sawant, K., 2013. AutoEPsDBSCAN. DBSCAN with Eps Automatic for Large, pp. 2:2319-2526
  4. Han, J., Kamber, M. & Pei, J., 2012. Data Mining Concept & Techniques. Waltham: Elsevier
  5. Poelitz, C. & Andrienko, N., 2010. Finding Arbitrary Shaped Cluster with Related Extents in Space and Time. IEEE-VGTC Simposium on Visualization
  6. Pramadhani, A. E. & Setiadi, T., 2014. Data Mining untuk Klasifikasi Prediksi Penyakit ISPA dengan Algoritma Decision Tree. Jurnal Sarjana Teknik Informatika, pp. 831-839
  7. Purwanto, B. U. B. Y., 2012. Spatial Hotspots Clustering of Forest and Land Fires using DBSCAN and ST-DBSCAN. Scientific Repository (IPB)
  8. Santosa, B., 2007. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu
  9. Shearer, M. P., 2009. Introduction of Seismology. In: Cambridge: Cambridge University Press
  10. Siswowidjoyo, S., 1996. Pengantar Seismologi Gunungapi dan Hubungannya dengan Kegiatan Gunungapi, Bandung: Pusat Vulkanologi dan Mitigasi Bencana Geologi
  11. Suyanto, D., 2019. Data Mining Untuk Klasifikasi dan Klasterisasi Data. Bandung: Penerbit Informatika
  12. Trisnaningtyas, A., 2014. Pengelompokan Data Indeks Pembangunan Manusia di Pulau Jawa Dengan Algoritme ST-DBSCAN dan Bahasa Pemrograman Python

Last update:

No citation recorded.

Last update:

No citation recorded.