BibTex Citation Data :
@article{J.Gauss28865, author = {Affan Hanafaie and Sugito Sugito and Sudarno Sudarno}, title = {PERAMALAN MENGGUNAKAN MODEL FEED FORWARD NEURAL NETWORK DENGAN ALGORITMA ADAPTIVE SIMULATED ANNEALING (Studi kasus: Harga minyak mentah dunia yang dipublikasikan oleh OPEC)}, journal = {Jurnal Gaussian}, volume = {7}, number = {4}, year = {2018}, keywords = {neural network, Adaptive Simulated Annealing, crude oil.}, abstract = { Today, crude oil trading industry is still an important industry in the world because it still has high fuel oil consumption. The crude oil prices tend to fluctuate causing the prediction of crude oil in the coming periods to be a challenge. Forecasting the price of crude oil can be done by various methods, one of them is ARIMA Box-Jenkins model with OLS method to estimate the parameter, but this method has several assumptions that must be met. As time goes by, many methods that discovered, one of them is artificial neural network which can combined with various parameter optimization methods such as Adaptive Simulated Annealing algorithm. Adaptive Simulated Annealing algorithm is an optimization method that inspired by the process of crystallization, the advantages of this algorithm has a running time faster than similar algorithms. The combination of artificial neural networks and Adaptive Simulated Annealing algorithms can be used to model the historical data without requiring assumptions in the analysis. Based on the analysis on this research, the best model is obtained FFNN 2-5-1 with MAPE value of 1.0042%. Keywords : neural network, Adaptive Simulated Annealing , crude oil. }, issn = {2339-2541}, pages = {373--384} doi = {10.14710/j.gauss.7.4.373-384}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/28865} }
Refworks Citation Data :
Today, crude oil trading industry is still an important industry in the world because it still has high fuel oil consumption. The crude oil prices tend to fluctuate causing the prediction of crude oil in the coming periods to be a challenge. Forecasting the price of crude oil can be done by various methods, one of them is ARIMA Box-Jenkins model with OLS method to estimate the parameter, but this method has several assumptions that must be met. As time goes by, many methods that discovered, one of them is artificial neural network which can combined with various parameter optimization methods such as Adaptive Simulated Annealing algorithm. Adaptive Simulated Annealing algorithm is an optimization method that inspired by the process of crystallization, the advantages of this algorithm has a running time faster than similar algorithms. The combination of artificial neural networks and Adaptive Simulated Annealing algorithms can be used to model the historical data without requiring assumptions in the analysis. Based on the analysis on this research, the best model is obtained FFNN 2-5-1 with MAPE value of 1.0042%.
Keywords: neural network, Adaptive Simulated Annealing, crude oil.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics