BibTex Citation Data :
@article{J.Gauss26684, author = {Shella Rohmana and Agus Rusgiyono and Sugito Sugito}, title = {PENENTUAN FAKTOR-FAKTOR YANG MEMPENGARUHI INTENSITAS CURAH HUJAN DENGAN ANALISIS DISKRIMINAN GANDA DAN REGRESI LOGISTIK MULTINOMIAL (Studi Kasus: Data Curah Hujan Kota Semarang dari Stasiun Meteorologi Maritim Tanjung Emas Periode Oktober 2018 – Maret 2019)}, journal = {Jurnal Gaussian}, volume = {8}, number = {3}, year = {2019}, keywords = {multiple discriminant analysis, multinomial logistic regresion, classification accuracy, rainfall}, abstract = { Meteorologist develop rainfall forecasting methods to obtain better and more accurate rainfall information. One of them is the research of grid data and the method of grouping rainfall. According to BMKG, rainfall is classified into light, medium, and heavy rain. This study aims to determine the factors that influencing rainfall grouping using multiple discriminant analysis with a stepwise selection method. This study uses the daily climate data of Semarang City for period of October 2018 to March 2019. Based on its partial F value, the wind speed variable is eliminated so the significant variable on rainfall grouping are air temperature, air humidity, and wind direction. This analysis produces discriminant scores obtained from linear combinations between discriminant weights and observation values of significant independent variable. The classification procedure is based on the discriminant score each observations compared to cutting score resulted in classification accuracy of 62.89%. Multinomial logistic regression analysis is used to determine the effect of independent variables on rainfall intensity using the odds ratio. This analysis produces an estimate of the conditional probability of each group using significant independent variables are air temperature, air humidity, wind speed, and wind direction. The classification procedure is based on the largest conditional probability value between rainfall groups resulted in classification accuracy of 69.80%. Keywords : multiple discriminant analysis, multinomial logistic regresion, classification accuracy, rainfall }, issn = {2339-2541}, pages = {398--406} doi = {10.14710/j.gauss.8.3.398 - 406}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26684} }
Refworks Citation Data :
Meteorologist develop rainfall forecasting methods to obtain better and more accurate rainfall information. One of them is the research of grid data and the method of grouping rainfall. According to BMKG, rainfall is classified into light, medium, and heavy rain. This study aims to determine the factors that influencing rainfall grouping using multiple discriminant analysis with a stepwise selection method. This study uses the daily climate data of Semarang City for period of October 2018 to March 2019. Based on its partial F value, the wind speed variable is eliminated so the significant variable on rainfall grouping are air temperature, air humidity, and wind direction. This analysis produces discriminant scores obtained from linear combinations between discriminant weights and observation values of significant independent variable. The classification procedure is based on the discriminant score each observations compared to cutting score resulted in classification accuracy of 62.89%. Multinomial logistic regression analysis is used to determine the effect of independent variables on rainfall intensity using the odds ratio. This analysis produces an estimate of the conditional probability of each group using significant independent variables are air temperature, air humidity, wind speed, and wind direction. The classification procedure is based on the largest conditional probability value between rainfall groups resulted in classification accuracy of 69.80%.
Keywords: multiple discriminant analysis, multinomial logistic regresion, classification accuracy, rainfall
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics