skip to main content

PERAMALAN INDEKS HARGA SAHAM GABUNGAN DENGAN METODE LOGISTIC SMOOTH TRANSITION AUTOREGRESSIVE (LSTAR)

*Gayuh Kresnawati  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Abdul Hoyyi  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Smooth Transition Autoregressive (STAR) Model is one of time series model used in case of data that has nonlinear tendency. STAR is an expansion of Autoregressive (AR) Model and can be used if the nonlinear test is accepted. If the transition function G(st,γ,c) is logistic, the method used is Logistic Smooth Transition Autoregressive (LSTAR). Weekly IHSG data in period of 3 January 2010 until 24 December 2017 has nonlinier tend and logistic transition function so it can be modeled with LSTAR . The result of this research with significance level of 5% is the LSTAR(1,1) model. The forecast of IHSG data for the next 15 period has Mean Absolute Percentage Error (MAPE) 2,932612%.

 

Keywords : autoregressive, LSTAR, nonlinier, time series

Fulltext View|Download
Keywords: autoregressive, LSTAR, nonlinier, time series

Article Metrics:

Last update:

No citation recorded.

Last update:

No citation recorded.