BibTex Citation Data :
@article{J.Gauss16948, author = {Dhimas Bayususetyo and Rukun Santoso and Tarno Tarno}, title = {KLASIFIKASI CALON PENDONOR DARAH MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER (Studi Kasus : Calon Pendonor Darah di Kota Semarang)}, journal = {Jurnal Gaussian}, volume = {6}, number = {2}, year = {2017}, keywords = {Classification, Naïve Bayes, Normal Density Function, Cumulative Distribution Function, Blood Donors, Matthews Correlation Coefficient (MCC).}, abstract = { Classification is the process of finding a model or function that describes and distinguishes data classes or concepts, for the purpose of being able to use the model to predict the class of objects whose class label is unknown. There are some methods that are included in the classification methods, one of them is Naïve Bayes . Naïve Bayes is a prediction technique that based simple probabilistic are based on the application of Bayes theorem with strong independence assumption. On this study carried out correction to the Naïve Bayes method in calculating the conditional probability of each feature using two approaches, normal density function and cumulative distribution function approaches. These two approaches are used to classify prospective blood donors in Semarang City. The predictor variables used are hemoglobin level, upper blood pressure, lower blood pressure, and weight. The result of this study shows that both approaches have the same Matthews Correlation Coefficient (MCC) values, 0.8985841 or close to +1. It means that both approaches equally well doing classification. Keywords: Classification, Naïve Bayes, Normal Density Function, Cumulative Distribution Function, Blood Donors, Matthews Correlation Coefficient (MCC). }, issn = {2339-2541}, pages = {193--200} doi = {10.14710/j.gauss.6.2.193-200}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/16948} }
Refworks Citation Data :
Classification is the process of finding a model or function that describes and distinguishes data classes or concepts, for the purpose of being able to use the model to predict the class of objects whose class label is unknown. There are some methods that are included in the classification methods, one of them is Naïve Bayes. Naïve Bayes is a prediction technique that based simple probabilistic are based on the application of Bayes theorem with strong independence assumption. On this study carried out correction to the Naïve Bayes method in calculating the conditional probability of each feature using two approaches, normal density function and cumulative distribution function approaches. These two approaches are used to classify prospective blood donors in Semarang City. The predictor variables used are hemoglobin level, upper blood pressure, lower blood pressure, and weight. The result of this study shows that both approaches have the same Matthews Correlation Coefficient (MCC) values, 0.8985841 or close to +1. It means that both approaches equally well doing classification.
Keywords: Classification, Naïve Bayes, Normal Density Function, Cumulative Distribution Function, Blood Donors, Matthews Correlation Coefficient (MCC).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics