BibTex Citation Data :
@article{J.Gauss14776, author = {Titis Utami and Abdul Hoyyi and Agus Rusgiyono}, title = {PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria)}, journal = {Jurnal Gaussian}, volume = {6}, number = {1}, year = {2017}, keywords = {deterministic trend, calender variation, time series, stochastic model, dummy regression.}, abstract = { The amount of the data of KA Argo Muria indicates the improve in every year during Ied mubarak day. Ied Mubarak day follows the Hijriyah calender, this is inditates that there is case effect of variation on the calender. The aims of this research is to predict the amount of the KA Argo Mulia passanger of destination of Semarang – Jakarta for 12 periodes in the future by using forecasting time series model of variation calender. The data used mounthly amount data KA Argo Mulia at PT KAI DAOP IV Semarang in the periode of January 2014 until Desember 2015. The result of the data analysis shows significant variable toward the model is and the model of Autoregressive Integrated Moving Average (ARIMA) (1,0,0). Based on the result of forecasting out-sample data, is gained Mean Absolute Percentage Error (MAPE) is 1,8089 % which indicates that the result of forecasting is very good. Keywords: deterministic trend, calender variation, time series, stochastic model, dummy regression. }, issn = {2339-2541}, pages = {131--140} doi = {10.14710/j.gauss.6.1.131-140}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/14776} }
Refworks Citation Data :
The amount of the data of KA Argo Muria indicates the improve in every year during Ied mubarak day. Ied Mubarak day follows the Hijriyah calender, this is inditates that there is case effect of variation on the calender. The aims of this research is to predict the amount of the KA Argo Mulia passanger of destination of Semarang – Jakarta for 12 periodes in the future by using forecasting time series model of variation calender. The data used mounthly amount data KA Argo Mulia at PT KAI DAOP IV Semarang in the periode of January 2014 until Desember 2015. The result of the data analysis shows significant variable toward the model is and the model of Autoregressive Integrated Moving Average (ARIMA) (1,0,0). Based on the result of forecasting out-sample data, is gained Mean Absolute Percentage Error (MAPE) is 1,8089 % which indicates that the result of forecasting is very good.
Keywords: deterministic trend, calender variation, time series, stochastic model, dummy regression.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics