BibTex Citation Data :
@article{J.Gauss14701, author = {Mohamad Pahlevi and Mustafid Mustafid and Triastuti Wuryandari}, title = {MODEL REGRESI COX STRATIFIED PADA DATA KETAHANAN}, journal = {Jurnal Gaussian}, volume = {5}, number = {3}, year = {2016}, keywords = {Stratified Cox, Cox Proportional Hazard, MPLE, Haemorrhagic Stroke, Recurrent Events}, abstract = { Stratified Cox model on the events are not identical is a modification of the Cox Proportional Hazard models when there are individuals who experienced more than one incident. This study aims to form a stratified Cox regression models for repeated occurrences of data are not identical and their application to cases of hemorrhagic stroke disease recurrence and to determine the factors that affect the case. Parameter Estimation in Stratified Cox models using Partial Maximum Likelihood Estimation (MPLE). Stratified Cox model building procedure consists of six stages: (1) identification data, which specify the variables that will be used in the Cox models. (2) Estimated Cox Proportional Hazard model parameters. (3) The test parameters for each variable using the Wald test. (4) Testing Proportional Hazard assumptions. (5) stratification variables. (6) Interpretation Stratified Cox models. This study uses data of patients who experienced a hemorrhagic stroke unspecified with 7 independent variables such as age, sex, blood pressure, blood sugar, triglycerides, cholesterol and replications. Based on the testing parameters obtained three variables that influence such as age, cholesterol levels and repeat. Furthermore, in assuming Proportional Hazard showed that replicates variable Proportional Hazard did not meet the assumptions that need to be stratified. Unspecified hemorrhagic stroke patients aged over 50 years admitted to 3.230 times longer than the patients were under 50 years old. Unspecified hemorrhagic stroke patients with high cholesterol levels are treated 0.182 times faster than patients with normal cholesterol levels. Keywords : Stratified Cox, Cox Proportional Hazard, MPLE, Haemorrhagic Stroke, Recurrent Events }, issn = {2339-2541}, pages = {455--464} doi = {10.14710/j.gauss.5.3.455-464}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/14701} }
Refworks Citation Data :
Stratified Cox model on the events are not identical is a modification of the Cox Proportional Hazard models when there are individuals who experienced more than one incident. This study aims to form a stratified Cox regression models for repeated occurrences of data are not identical and their application to cases of hemorrhagic stroke disease recurrence and to determine the factors that affect the case. Parameter Estimation in Stratified Cox models using Partial Maximum Likelihood Estimation (MPLE). Stratified Cox model building procedure consists of six stages: (1) identification data, which specify the variables that will be used in the Cox models. (2) Estimated Cox Proportional Hazard model parameters. (3) The test parameters for each variable using the Wald test. (4) Testing Proportional Hazard assumptions. (5) stratification variables. (6) Interpretation Stratified Cox models. This study uses data of patients who experienced a hemorrhagic stroke unspecified with 7 independent variables such as age, sex, blood pressure, blood sugar, triglycerides, cholesterol and replications. Based on the testing parameters obtained three variables that influence such as age, cholesterol levels and repeat. Furthermore, in assuming Proportional Hazard showed that replicates variable Proportional Hazard did not meet the assumptions that need to be stratified. Unspecified hemorrhagic stroke patients aged over 50 years admitted to 3.230 times longer than the patients were under 50 years old. Unspecified hemorrhagic stroke patients with high cholesterol levels are treated 0.182 times faster than patients with normal cholesterol levels.
Keywords: Stratified Cox, Cox Proportional Hazard, MPLE, Haemorrhagic Stroke, Recurrent Events
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics