BibTex Citation Data :
@article{J.Gauss14690, author = {Aryono Hakim and Diah Safitri and Sugito Sugito}, title = {KLASIFIKASI KEIKUTSERTAAN KELUARGA DALAM PROGRAM KELUARGA BERENCANA (KB) DI KOTA SEMARANG MENGGUNAKAN METODE MARS DAN FK-NNC}, journal = {Jurnal Gaussian}, volume = {5}, number = {3}, year = {2016}, keywords = {Classification; MARS; FK-NNC; APER; Keluarga Berencana}, abstract = { Classification method is a statistical method for grouping or classifying data. A good classification method will produce a little bit of misclassification. Classification method has been greatly expanded and two of the existing classification methods are Multivariate Adaptive Regression Spline (MARS) and Fuzzy k-Nearest Neighbor in Every Class (FK-NNC). This study is aimed to compare a classification of Keluarga Berencana participation based on suspected factors that affect them between the methods of MARS and FK-NNC. This study uses secondary data which one is the participation of Keluarga Berencana in Semarang on 2014. Evaluation of errors use an Apparent Error Rate (APER). In the method MARS best classification results is obtained with the combination of BF = 24, MI = 3, MO = 0 for generating a smallest Generalized Cross Validation (GCV) value and the APER is obtained by 19%. While FK-NNC method is obtained the best classification results in k = 3 for generating the greatest accuracy of classification value and APER value is obtained by 22%. Based on APER (Apparent Error Rate) calculation, it shown that the classification of family participation in Keluarga Berencana (KB) programs in Semarang using MARS method is better than FK-NNC method. Keywords: Classification, MARS, FK-NNC, APER, Keluarga Berencana}, issn = {2339-2541}, pages = {341--349} doi = {10.14710/j.gauss.5.3.341-349}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/14690} }
Refworks Citation Data :
Classification method is a statistical method for grouping or classifying data. A good classification method will produce a little bit of misclassification. Classification method has been greatly expanded and two of the existing classification methods are Multivariate Adaptive Regression Spline (MARS) and Fuzzy k-Nearest Neighbor in Every Class (FK-NNC). This study is aimed to compare a classification of Keluarga Berencana participation based on suspected factors that affect them between the methods of MARS and FK-NNC. This study uses secondary data which one is the participation of Keluarga Berencana in Semarang on 2014. Evaluation of errors use an Apparent Error Rate (APER). In the method MARS best classification results is obtained with the combination of BF = 24, MI = 3, MO = 0 for generating a smallest Generalized Cross Validation (GCV) value and the APER is obtained by 19%. While FK-NNC method is obtained the best classification results in k = 3 for generating the greatest accuracy of classification value and APER value is obtained by 22%. Based on APER (Apparent Error Rate) calculation, it shown that the classification of family participation in Keluarga Berencana (KB) programs in Semarang using MARS method is better than FK-NNC method.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics