BibTex Citation Data :
@article{J.Gauss11062, author = {Yusuf Rahman and Suparti Suparti and Sugito Sugito}, title = {Ketepatan Klasifikasi Status Pemberian Air Susu Ibu (ASI) Menggunakan Multivariate Adaptive Regression Splines (MARS) dan Algoritma C4.5 di Kabupaten Sragen}, journal = {Jurnal Gaussian}, volume = {5}, number = {1}, year = {2016}, keywords = {Breastfeeding; Classification; MARS; C4.5 Algorithm}, abstract = { The progress of a nation influenced and determined by the level of public health, the indicator of the level of health is determined by nutritional status. Nutrition can be given early, namely breastfeeding to infants. This research aims to compare the classification of exclusive breastfeeding and nonexclusive breastfeeding. It used two methods for classifying a breastfeeding to babies in Sragen subdistrict on 2014, the methods are Multivariate Adaptive Regression Splines (MARS) and C4.5 Algorithm. MARS is nonparametric regression method that use to overcome the high dimension of data that produces accurate prediction and continuous models on knot. C4.5 Algorithm is a way of classifying methods from data mining that use to construct a decision tree. To evaluate the result of classification use Apparent Error Rate (APER) calculation. The best classification result using MARS method is by using the combination of Basis Function (BF)=40, Maximum Interaction (MI)=3, Minimum Obsevation (MO)=3 because it will result on the smallest Generalized Cross Validation (GCV). Classification result using MARS method obtained APER is 19,7674% and 80,2326% of accuracy. Classification result using C4.5 Algorithm obtained APER is 18,6047% and 81,3953% of accuracy. From proportion test, concluded classification that formed by MARS is as good as by C4.5 Algorithm. Key w ords: Breastfeeding, Classification, MARS, C4.5 Algorithm }, issn = {2339-2541}, pages = {229--238} doi = {10.14710/j.gauss.5.1.229-238}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/11062} }
Refworks Citation Data :
The progress of a nation influenced and determined by the level of public health, the indicator of the level of health is determined by nutritional status. Nutrition can be given early, namely breastfeeding to infants. This research aims to compare the classification of exclusive breastfeeding and nonexclusive breastfeeding. It used two methods for classifying a breastfeeding to babies in Sragen subdistrict on 2014, the methods are Multivariate Adaptive Regression Splines (MARS) and C4.5 Algorithm. MARS is nonparametric regression method that use to overcome the high dimension of data that produces accurate prediction and continuous models on knot. C4.5 Algorithm is a way of classifying methods from data mining that use to construct a decision tree. To evaluate the result of classification use Apparent Error Rate (APER) calculation. The best classification result using MARS method is by using the combination of Basis Function (BF)=40, Maximum Interaction (MI)=3, Minimum Obsevation (MO)=3 because it will result on the smallest Generalized Cross Validation (GCV). Classification result using MARS method obtained APER is 19,7674% and 80,2326% of accuracy. Classification result using C4.5 Algorithm obtained APER is 18,6047% and 81,3953% of accuracy. From proportion test, concluded classification that formed by MARS is as good as by C4.5 Algorithm.
Keywords: Breastfeeding, Classification, MARS, C4.5 Algorithm
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics