BibTex Citation Data :
@article{J.Gauss10911, author = {Anik Aini and Diah Safitri and Abdul Hoyyi}, title = {ANALISIS LAPANGAN PEKERJAAN UTAMA DI JAWA TENGAH BERDASARKAN GRAFIK BIPLOT SQRT (SQUARE ROOT BIPLOT)}, journal = {Jurnal Gaussian}, volume = {5}, number = {1}, year = {2016}, keywords = {Biplot; Singular Value Decomposition; Jobs; SQRT; Square Root Biplot}, abstract = { Biplot analysis is one of the methods of descriptive statistical analysis that can present data of the n objects which p variables into a two-dimensional graph. Biplot has several types according to the scale of α used. There are three scales α which is often used in the biplot analysis, that are α = 0, α = 0,5 and α = 1. Biplot with α = 1 is called the RMP biplot (Row Matric Preserving). Biplot with α = 0 is called CMP biplot (Column Matric Preserving). While biplot with α = 0,5 called SQRT biplot (Square Root Biplot). Biplot with a scale of α = 0,5 is the best biplot to describe a data, because it make a graph between variable and object spread evenly. This study aims to create a SQRT biplot amount of population aged 15 years and over who worked according to district/city and major employment opportunities in Central Java. Biplot chart shows areas that have similar characteristics with the closest Euclidean distance. The diversity of characteristics is indicated by the length of the vector, the longest vector contained in the agricultural sector. Based on the biplot analysis in this study, it was obtained that the goodness size biplot is equal to 64,19958%. Keywords : Biplot, Singular Value Decomposition, Jobs, SQRT, Square Root Biplot }, issn = {2339-2541}, pages = {41--50} doi = {10.14710/j.gauss.5.1.41-50}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10911} }
Refworks Citation Data :
Biplot analysis is one of the methods of descriptive statistical analysis that can present data of the n objects which p variables into a two-dimensional graph. Biplot has several types according to the scale of α used. There are three scales α which is often used in the biplot analysis, that are α = 0, α = 0,5 and α = 1. Biplot with α = 1 is called the RMP biplot (Row Matric Preserving). Biplot with α = 0 is called CMP biplot (Column Matric Preserving). While biplot with α = 0,5 called SQRT biplot (Square Root Biplot). Biplot with a scale of α = 0,5 is the best biplot to describe a data, because it make a graph between variable and object spread evenly. This study aims to create a SQRT biplot amount of population aged 15 years and over who worked according to district/city and major employment opportunities in Central Java. Biplot chart shows areas that have similar characteristics with the closest Euclidean distance. The diversity of characteristics is indicated by the length of the vector, the longest vector contained in the agricultural sector. Based on the biplot analysis in this study, it was obtained that the goodness size biplot is equal to 64,19958%.
Keywords: Biplot, Singular Value Decomposition, Jobs, SQRT, Square Root Biplot
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics