BibTex Citation Data :
@article{J.Gauss10234, author = {Ratih Binadari and Yuciana Wilandari and Suparti Suparti}, title = {PERBANDINGAN METODE REGRESI LOGISTIK BINER DAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) PADA PEMINATAN JURUSAN SMA (Studi Kasus SMA Negeri 2 Semarang)}, journal = {Jurnal Gaussian}, volume = {4}, number = {4}, year = {2015}, keywords = {Major specialization at High School, Biner Logistic Regression, Mutlivariate Adaptive Regression Spline (MARS), Clasification}, abstract = { Major specialization at High School is aimed to gives opened opportunity for students to choose subject that are interest and develop their potential in accordance with the abilities, interests, talents, and personality. Major specialization at High school is influenced by some factors. To detect those factors, used biner logistic regression method and Multivariate Adaptive Regression Spline (MARS). Biner Logistic Regression is method that describes relationship between dependent variable and some independent variable, with independent variable has been coded 1 as representing the presence of the characteristic, and 0 as representing the absence of the characteristic. MARS is multivariate nonparametric regression method that development of Recursive Partitioning Regression (RPR) method and Spline method for high dimensional data that produces accurate prediction and continuous models on knots. Both of the methods are compared to know the best method used in research. From the result of analysis using biner logistic regression method and MARS, concluded that major specialization has been influenced by mathematic score, science score and relationship between students and friends. From proportion test, concluded classification that formed by regression logistic is as good as by MARS. Keywords : Major specialization at High School, Biner Logistic Regression, Mutlivariate Adaptive Regression Spline (MARS), Clasification }, issn = {2339-2541}, pages = {987--996} doi = {10.14710/j.gauss.4.4.987-996}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10234} }
Refworks Citation Data :
Major specialization at High School is aimed to gives opened opportunity for students to choose subject that are interest and develop their potential in accordance with the abilities, interests, talents, and personality. Major specialization at High school is influenced by some factors. To detect those factors, used biner logistic regression method and Multivariate Adaptive Regression Spline (MARS). Biner Logistic Regression is method that describes relationship between dependent variable and some independent variable, with independent variable has been coded 1 as representing the presence of the characteristic, and 0 as representing the absence of the characteristic. MARS is multivariate nonparametric regression method that development of Recursive Partitioning Regression (RPR) method and Spline method for high dimensional data that produces accurate prediction and continuous models on knots. Both of the methods are compared to know the best method used in research. From the result of analysis using biner logistic regression method and MARS, concluded that major specialization has been influenced by mathematic score, science score and relationship between students and friends. From proportion test, concluded classification that formed by regression logistic is as good as by MARS.
Keywords : Major specialization at High School, Biner Logistic Regression, Mutlivariate Adaptive Regression Spline (MARS), Clasification
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics