BibTex Citation Data :
@article{J.Gauss10220, author = {Feby Prabowo and Yuciana Wilandari and Agus Rusgiyono}, title = {PEMODELAN PERTUMBUHAN EKONOMI JAWA TENGAH MENGGUNAKAN PENDEKATAN LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO)}, journal = {Jurnal Gaussian}, volume = {4}, number = {4}, year = {2015}, keywords = {LASSO, Multicollinearity, Shrinkage, Gross Regional Domestic Product (GRDP)}, abstract = { The economic growth recently become more important because of its implementation widely, the economic growth concept is a measure of country or regional economy valuation. The economic growth data in this research that is measured by Gross Regional Domestic Product (GRDP) are susceptible of multicollinearity. Multicollinearity become a problem in regression analysis, especially in Ordinary Least Square (OLS) because it causes the regression coefficient estimates become not efficient. One of method to overcome multicollinearity is using Least Absolute Shrinkage and Selection Operator (LASSO). LASSO is a shrinkage method to estimate regression coefficients by minimazing residual sum of squares subject to a constraint. Because of that constraint, LASSO can shrinks coefficients towards zero or set them to exactly zero so it can do variable selection too. Based on Variance Inflation Factor (VIF), there are high correlations between predictor variables, so there is multicollinearity in growth economic data of Jawa Tengah 2013 if we use OLS. In this research, LASSO shrinks eleven coefficients estimator of predictor variables to exactly zero, so that variables considered to have not a significant influence toward model. Keywords : LASSO, Multicollinearity, Shrinkage, Gross Regional Domestic Product (GRDP) }, issn = {2339-2541}, pages = {855--864} doi = {10.14710/j.gauss.4.4.855-864}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10220} }
Refworks Citation Data :
The economic growth recently become more important because of its implementation widely, the economic growth concept is a measure of country or regional economy valuation. The economic growth data in this research that is measured by Gross Regional Domestic Product (GRDP) are susceptible of multicollinearity. Multicollinearity become a problem in regression analysis, especially in Ordinary Least Square (OLS) because it causes the regression coefficient estimates become not efficient. One of method to overcome multicollinearity is using Least Absolute Shrinkage and Selection Operator (LASSO). LASSO is a shrinkage method to estimate regression coefficients by minimazing residual sum of squares subject to a constraint. Because of that constraint, LASSO can shrinks coefficients towards zero or set them to exactly zero so it can do variable selection too. Based on Variance Inflation Factor (VIF), there are high correlations between predictor variables, so there is multicollinearity in growth economic data of Jawa Tengah 2013 if we use OLS. In this research, LASSO shrinks eleven coefficients estimator of predictor variables to exactly zero, so that variables considered to have not a significant influence toward model.
Keywords : LASSO, Multicollinearity, Shrinkage, Gross Regional Domestic Product (GRDP)
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics