RISIKO KREDIT PORTOFOLIO OBLIGASI DENGAN CREDIT METRICS DAN OPTIMALISASI PORTOFOLIO DENGAN METODE MEAN VARIANCE EFFICIENT PORTFOLIO (MVEP)

Nurul Fauziah¹, Abdul Hoyyi², Di Asih I Maruddani³

¹Mahasiswa Jurusan Statistika FSM Universitas Diponegoro

^{2,3}Staf Pengajar Jurusan Statistika FSM UNDIP

ABSTRACT

Investing is a important thing in a capital market. Bond investment must be noticed the risk especially credit risk. From the information of credit risk, investor can choose the right investment. Credit Metrics is a reduced form model to estimate the risk. Credit Metrics is centered by the corporate rating. The risk not only occur when corporate rating be default but also if the rating upgrade or downgrade. For a bond portfolio, can calculate the optimal portfolio by Mean Variance Efficient Portfolio method. Empirical study can be used for two bonds, first bond is Obligasi Adira Dinamika Multi Finance V Tahun 2011 Seri A and second one is Obligasi BFI Finance Indonesia III Tahun 2011 Seri A. First bond has 127.01640 (Billion) of credit risk and the second one bonds has 18.33472 (Billion). For a portfolio of that two bonds, they have 179.82460 (Billion). For the optimal portfolio, first bond has propotion 66.39% and 33.61% for the second bond.

Keywords: credit risk, rating, Credit Metrics, default, Mean Variance Efficient Portfolio.

1. PENDAHULUAN

Dalam dunia pasar modal, tidak hanya terjadi perdagangan saham yang biasanya dikenal oleh masyarakat luas, akan tetapi terjadi suatu perdagangan surat utang atau yang sering dikenal dengan istilah obligasi. Perdagangan obligasi telah mulai dikenal di kalangan perusahaan yang membutuhkan modal maupun pihak investasi. Sama seperti saham, obligasi pun cukup menarik untuk dijadikan suatu investasi yang menjanjikan. Dengan menerbitkan obligasi, perusahaan akan mendapatkan aliran dana baru dengan kewajiban membayar suku bunga/kupon tiap periode dan membayar pokok obligasi pada saat jatuh tempo yang telah ditentukan sebelumnya.

Obligasi terlihat sangat menarik, akan tetapi perdagangan obligasi tidak terlepas dari risiko. Dalam berinvestasi pada obligasi, terdapat risiko yang paling ditakutkan adalah risiko kebangkrutan/default, sehingga dalam perdagangannya pihak investor diharapkan dapat memilih atau mempertimbangkan obligasi yang aman untuk berinvestasi.

Dalam pasar obligasi dikenal beberapa metode untuk mengitung risiko kredit obligasi, salah satunya yaitu metode *Credit Metrics* yang dikenalkan oleh J.P Morgan. *Credit Metrics* adalah alat untuk menilai risiko obligasi akibat perubahan nilai hutang yang disebabkan oleh perubahan kualitas obligor (perubahan nilai *rating*). *Credit Metrics* menyatakan perubahan nilai obligasi, apabila terjadi *default*, juga perubahan *upgrade* dan *downgrade rating* obligasi (JP. Morgan, 1997). Metode *Credit Metrics* menggunakan data *rating* dan matriks transisi yang diterbitkan oleh perusahaan pemeringkat. Perusahaan pemeringkat di Indonesia yang terkenal antara lain IBPA, PEFINDO dan *Kasnic Credit Rating Indonesia. Rating* obligasi sangat mempengaruhi pihak investor untuk menginyestasikan uangnya. *Rating* ini dihitung

dari data asset perusahaan sehingga sangat mewakili kemampuan sebuah perusahaan untuk melunasi kupon dan nominal obligasi pada saat jatuh tempo.

Apabila seorang investor ingin menginvestasikan uangnya pada dua atau lebih obligasi, maka akan dihitung nilai risiko kredit dari portofolio. Untuk kasus portofolio akan dihitung proporsi nominal uang yang akan diinvestasikan pada kedua atau lebih obligasi, sehingga diperoleh protofolio yang optimal dan efisien, metode yang digunakan adalah *Mean Variance Efficient Portfolio* (MVEP).

2. TINJAUAN PUSTAKA

2.1 Obligasi

Obligasi merupakan surat utang jangka menengah-panjang yang dapat dipindah tangankan, diterbitkan oleh emiten (pihak peminjam) yang akan dibeli oleh investor (*obligor*), dimana pihak issuer wajib membayarkan suku bunga/kupon yang telah disepakati pada periode tertentu yang telah ditentukan dan melunasi nominal/pokok dari surat utang tersebut pada saat jatuh tempo kepada *obligor*/investor (Rahardjo, 2003).

2.1.1 Risiko Kredit Obligasi Persusahaan

Untuk melakukan investasi obligasi, akan timbul beberapa jenis risiko investasi yang berbeda hasilnya serta bisa berpengaruh dan berkaitan satu dengan yang lain. Berikut ini akan diuraikan beberapa jenis risiko investasi obligasi :

- a. Risiko Perubahan Tingkat Suku bunga (Interest Rate Risk)
- b. Risiko Likuiditas (*Liquidity Risk*)
- c. Risiko Perubahan Kurs Valuta Asing (Foreign Exchange Rate Risk)
- d. Risiko Pelunasan (*Call Risk*)
- e. Risiko Pembayaran (Credit Risk/Default)
- f. Risiko Investasi Kembali (Reinvestment Rate Risk)
- g. Risiko Jatuh Tempo (*Maturity Risk*)
- h. Risiko Inflasi (Inflation Risk)

(Rahardjo, 2003)

2.1.2 Rating Obligasi

Tujuan utama proses *rating* adalah memberikan informasi akurat mengenai kinerja keuangan, posisi bisnis industri perseroan yang menerbitkan surat utang (obligasi) dalam bentuk peringkat kepada calon investor. Setiap lembaga pemeringkat mempunyai karakteristik symbol peringkat yang berbeda-beda tetapi mempunyai pengertian yang sama. Lembaga pemeringkat tingkat internasional yang sangat terkenal di antaranya adalah *S & P* (*Standard & Poors*) *Cooperation* serta *Moody's Investors*. Sedangkan di Indonesia hanya dikenal tiga lembaga pemeringkat surat utang yaitu IBPA (*Indonesia Bond Pricing Agency*), PEFINDO (Pemeringkat Efek Indonesia) serta PT *Kasnic Credit Rating Indonasia* (Rahardjo, 2003).

2.2 Konsep Dasar Statistik

2.2.1 Teori Probabilitas

Teori probabilitas merupakan topik yang harus disajikan dalam belajar statistika. Tujuan utama dalam analisis statistik adalah mengambil keputusan (generalisasi) atau inferensi tentang suatu populasi berdasarkan informasi yang diperoleh dari data sampel. Dasar logika dari proses pengambilan inferensi statistik tentang suatu populasi dengan analisa data sampel adalah probabilitas (probabilitas).

2.2.3 Fungsi Probabilitas

Fungsi probabilitas merupakan rumusan matematika yang berhubungan dengan nilai-nilai karakteristik dengan probabilitas kejadian pada populasi. Pengumpulan probabilitas ini disebut distribusi probabilitas. Variabel random X disebut variabel random diskrit jika himpunan semua nilai yang mungkin muncul dari X merupakan himpunan terhitung (*countable*). Fungsi f(x) adalah suatu fungsi padat probabilitas dari peubah acak diskret X, bila

- 1. $f(x) \ge 0$
- 2. P(X = x) = f(x)
- 3. $\sum_{x} f(x) = 1$

Variabel random X disebut variabel random kontinu jika suatu ruang sampel mengandung sejumlah kemungkinan (*possibilities*) tak terbatas (*infinite*). Fungsi f(x) adalah suatu fungsi padat probabilitas dari peubah acak kontinu X yang didefinisikan himpunan bilangan real R, bila

- 1. $f(x) \ge 0$ untuk semua $x \in R$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$
- 3. $P(a < X < b) = \int_a^b f(x) dx$

(Walpole, 1995)

2.2.4 Karakteristik Distribusi Probabilitas

Distribusi probabilitas variabel random memiliki karakteristik antara lain mean (nilai ekspektasi) dan variansi. Berikut ini adalah pembahasan mengenai karakteristik distribusi probabilitas variabel random diskrit maupun kontinu.

Misalkan X suatu peubah acak dengan distribusi probabilitas f(x), maka nilai harapan dari X didefinisikan sebagai berikut:

$$E(X) = \begin{cases} \sum_{x \in X} x f(x) & \text{, jika X diskrit} \\ \int_{-\infty}^{\infty} x f(x) dx & \text{, jika X kontinu} \end{cases}$$
 (2.1)

Variansi dari peubah acak X didefinisikan sebagai berikut:

$$Var(X) = E(X - \mu)^{2}$$

$$= E(X^{2}) - (E(X))^{2}$$

$$= E(X^{2}) - \mu^{2}$$
(2.2)
(Walpole, 1995)

2.2.5 Proses Stokastik

Proses stokastik $\underline{X} = \{X(t), t \in T\}$ adalah himpunan variabel random X(t) untuk setiap t dalam indeks himpunan T. Indeks T seringkali diinterpretasikan sebagai waktu. Jika T countable maka \underline{X} adalah proses stokastik waktu diskrit dan jika T kontinu maka \underline{X} adalah proses stokastik waktu kontinu. Jika variabel random X(t) adalah variabel random diskrit, maka proses \underline{X} mempunyai ruang state diskrit dan jika variabel random X(t) adalah variabel random kontinu, maka proses X mempunyai ruang state kontinu (Ross, 1996).

2.2.6 Probabilitas Transisi

Jika rantai markov memiliki state yang mungkin, katakan 1,2,...,k maka probabilitas bahwa sistem tersebut dalam state j pada sembarang pengamatan setelah sistem tersebut berada dalam state i pada pengamatan sebelumnya dinotasikan dengan p_{ij} dan disebut probabilitas transisi dari state i ke state j. Matriks $\mathbf{P} = [p_{ij}]$ disebut matriks transisi dari rantai markov.

Dibuat matriks transisi k x k dari rantai markov, yaitu $\mathbf{P} = [p_{ij}]$ sebagai berikut :

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1j} & \dots & p_{1k} \\ p_{21} & p_{22} & \dots & p_{2j} & \dots & p_{2k} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ p_{i1} & p_{i2} & \dots & p_{ij} & \dots & p_{ik} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k1} & p_{k2} & \dots & p_{kj} & \dots & p_{kk} \end{bmatrix}$$

Matriks Transisi dari Rantai Markov

Jika matriks transisi dari suatu rantai markov adalah matriks $\mathbf{P} = [p_{ij}]$, maka elemen ke –ij adalah probabilitas bahwa sistem eksperimen berpindah dari state i ke state j pada langkahlangkah yang berurutan pada sistem tersebut.

3. CREDIT METRICS

Credit Metrics adalah alat untuk menilai risiko obligasi akibat perubahan nilai hutang yang disebabkan oleh perubahan kualitas obligor (perubahan nilai rating). Credit Metrics menyatakan perubahan nilai obligasi, tidak hanya apabila terjadi default, tetapi juga perubahan upgrade dan downgrade rating obligasi (Morgan, 1997).

3.1 Risiko Kredit Obligasi Satu Obligasi

Terdapat tiga langkah untuk menghitung resiko kredit portofolio untuk satu obligasi, dapat dijelaskan melalui langkah-langkah berikut :

Langkah 1: Perpindahan Rating Kredit.

Dalam *Credit Metrics*, risiko tidak hanya berasal dari *default*, tetapi juga dari perubahan nilai *rating* naik maupun turun. Likelihood probabilitas perpindahan *rating* ini disajikan dalam bentuk matriks dan disebut matriks transisi. Tabel 3.1 adalah contoh matriks transisi, dimana $p_{i,j}$ adalah probabilitas perpindahan dari *rating* i ke *rating* j.

Tubel of Transfer Matrix Said Terrode (70)									
Inisial	Rating di akhir periode (%)								
rating	AAA	AA	A	BBB	BB	В	CCC	Default	
AAA	$p_{AAA,AAA}$	$p_{AAA,AA}$	$p_{AAA,A}$	$p_{AAA,BBB}$	$p_{AAA,BB}$	$p_{AAA,B}$	$p_{AAA,CCC}$	$p_{AAA,D}$	
AA	$p_{AA,AAA}$	$p_{AA,AA}$	$p_{AA,A}$	$p_{AA,BBB}$	$p_{AA,BB}$	$p_{AA,B}$	$p_{AA,CCC}$	$p_{AA,D}$	
A	$p_{A,AAA}$	$p_{A,AA}$	$p_{A,A}$	$p_{A,BBB}$	$p_{A,BB}$	$p_{A,B}$	$p_{A,CCC}$	$p_{A,D}$	
BBB	$p_{BBB,AAA}$	$p_{BBB,AA}$	$p_{BBB,A}$	$p_{{\scriptscriptstyle BBB,BBE}}$	$p_{{\scriptscriptstyle BBB,BB}}$	$p_{BBB,B}$	$p_{BBB,CCC}$	$p_{{\scriptscriptstyle BBB,D}}$	
BB	$p_{BB,AAA}$	$p_{BB,AA}$	$p_{BB,A}$	$p_{BB,BBB}$	$p_{BB,BB}$	$p_{BB,B}$	$p_{BB,CCC}$	$p_{BB,D}$	
В	$p_{B,AAA}$	$p_{B,AA}$	$p_{B,A}$	$p_{B,BBB}$	$p_{B,BB}$	$p_{B,B}$	$p_{B,CCC}$	$p_{B,D}$	
CCC	$p_{CCC,AAA}$	$p_{CCC,AA}$	$p_{CCC,A}$	$p_{\mathit{CCC},BBB}$	$p_{\mathit{CCC},\mathit{BB}}$	$p_{CCC,B}$	$p_{ccc,ccc}$	$p_{CCC,D}$	

Tabel 3.1 Transisi Matriks Satu Periode (%)

Langkah 2: Valuation

1. Penilaian dalam keadaan default.

Jika kualitas kredit bermigrasi ke keadaan *default*, kemungkinan nilai residual dari pelunasan akan tergantung pada kelas senioritas dari utang. Tabel 3.2 adalah tabel *recovery rate* berdasarkan kelas senioritas yang diperoleh berdasarkan studi *default* pada perusahaan penerbit obligasi.

enerbit obligasi. **Tabel 3.2** Recovery Rates Berdasarkan Kelas Senioritas

Kelas senioritas Mean (%) Standar Deviasi (%) Senior Secured 53.80 26.86 25.45 Senior Unsecured 51.13 Senior Subordinated 38.52 23.81 Subordinated 32.74 20.18 17.09 10.90 Junior Subordinated

Sumber: Carty & Lieberman [96a] – Moody's Investors Service

Apabila tidak diketahui nilai *recovery rate* berdasarkan kelas senioritas maka akan dinilai semua *valuation* dari *default* obligasi dengan nilai yang sama. Nilai ini dimodelkan dari distribusi uniform, distribusi yang bernilai interval dari 0 sampai 1. Distribusi uniform memiliki nilai mean 0.5 dan standar deviasi 0.29 ($\sigma = \sqrt{1/12}$) (Morgan, 1997).

2. Valuation pada state naik atau turun kelas.

Untuk mendapatkan *valuation* pada risiko perpindahan *rating* naik maupun turun, dapat diperoleh langsung dari penilaian ulang nilai obligasi.

Langkah yang dapat dilakukan:

- a. Hitung kurva nol maju untuk setiap kategori rating. Kurva maju ini menyatakan risiko obligasi pada saat jatuh tempo.
- b. Dengan menggunakan kurva nol, menilai ulang obligasi yang tersisa pada arus kas apabila terjadi risiko perpindahan kualitas kredit untuk masing-masing kategori *rating*.

Kemudian akan dilakukan penghitungan nilai v (value), dengan rumus :

$$v = c + \frac{c}{(1 + r_1 + s_1)^1} + \frac{c}{(1 + r_2 + s_2)^2} + \dots + \frac{c + P}{(1 + r_n + s_n)^n}$$
 (2.3)

dengan

c = nilai kupon

 $s_i = credit spread$ dari obligasi pada setiap rating pada tahun ke i

 r_i = suku bunga bebas resiko pada waktu T yang diharapkan pada waktu tahun ke-i

P = harga awal obligasi

n = jumlah periode pembayaran kupon - 1

Untuk faktor pembagi jumlahan antara *credit spread* dan suku bunga bebas risiko dapat digunakan nilai kurva maju.

Langkah 3 : Estimasi risiko kredit.

Dalam melakukan estimasi untuk risiko kredit digunakan dua ukuran. Kedua ukuran ini adalah standar deviasi dan level persentil.

1. standar deviasi

$$\mu_{Total} = \sum_{i=1}^{s} p_i v_i$$

$$\sigma_{Total} = \sqrt{\sum_{i=1}^{s} p_i v_i^2 - \mu_{Total}^2}$$
(2.4)

dengan

 v_i = value nilai obligasi yang mungkin pada satu periode untuk

perubahan *rating* ke-i

 p_i = probabilitas atau *likelihood* pada state i di akhir periode

 μ_{Total} = mean total

 σ_{Total} = standar deviasi total

2. level persentil

Tingkat persentil pertama dapat diambil dari beberapa titik yang telah ditentukan sebelumnya misalnya 1% atau 5%. Akan dilihat pada rating mana jumlah kumulatif probabilitasnya tepat lebih dari 1% dihitung mulai dari probabilitas *default* sampai pada *rating* tertinggi. Nilai pada *rating* tersebut akan diambil sebagai persentil level pertama.

3.2 Nilai Distribusi dari Sebuah Portofolio Dua Obligasi

Setelah dilakukan valuation untuk kedua obligasi, yaitu dengan langkah seperti pada satu obligasi, maka akan dijumlahkan nilai *valuation* kedua obligasi sehingga terbentuk matriks *valuation* dua obligasi. Selanjutnya akan ditentukan join matriks transisi untuk kedua obligasi. Matriks *join probability transisi* adalah perkalian antara probabilitas perpindahan rating kedua obligasi, ditulis:

$$\mathbf{M} = \mathbf{G}_1^T \mathbf{G}_2 \tag{2.5}$$

dengan

Default

M = matriks join probability transisi

 G_1 = matriks rating obligasi 1

 G_2 = matriks rating obligasi 2

Valuation untuk gabungan kedua obligasi merupakan matriks penjumlahan kedua valuation obligasi tunggal, dimana $v_{k,i}$ adalah valuation dari obligasi ke k pada rating i.

Rating Obligasi 2 Rating obligasi Default **AAA** AAA Valuation $v_{2,\underline{AAA}}$ $v_{2,\underline{A}}$ $v_{2,D}$ $v_{2,AA}$ **AAA** $v_{1,AAA} + v_{2,AAA}$ $v_{1.AAA} + v_{2.AA}$ $v_{1.AAA} + v_{2.A}$ $v_{1,AAA} + v_{2,D}$ $v_{1,AAA}$. . . AA $v_{1,AA} + v_{2,AAA}$ $v_{1,AA} + v_{2,AA}$ $v_{1,AA} + v_{2,D}$ $v_{1,AA}$. . . A $v_{1,A} + \underline{v_{2,D}}$ $v_{1,A} + v_{2,AAA}$ $v_{1,A} + v_{2,AA}$. . . $v_{1,A}$

Tabel 3.3 Valuation Portofolio Dua Obligasi

(Morgan, 1997)

 $v_{1,D} + v_{2,D}$

٠.

3.3 Mean Variance Efficient Portfolio (MVEP)

 $v_{1.D}$

Mean Variance Efficient Portfolio (MVEP) didefinisikan sebagai portofolio yang memiliki varian minimum diantara keseluruhan kemungkinan portofolio yang dapat dibentuk. Jika diasumsikan preferensi investor terhadap risiko adalah risk averse (menghindari risiko), maka portofolio yang memiliki mean variance efisien (Mean Variance Efficient Portfolio) adalah portofolio yang memiliki varian minimum dari mean risikonya. Hal tersebut sama dengan mengoptimalisasi bobot $\mathbf{w} = [w_1 \dots w_N]^T$ berdasarkan maksimum mean risiko dari varian yang diberikan.

Secara lebih formal, akan dicari vektor pembobotan **w** agar portofolio yang dibentuk mempunyai varian yang minimum berdasarkan dua batasan (*constraints*) yaitu

- 1. Spesifikasi awal dari mean risiko $\mu_{\scriptscriptstyle p}$ harus tercapai yaitu $\mathbf{w}^{\scriptscriptstyle T}\mathbf{\mu}$.
- 2. Jumlah proporsi dari portofolio yang terbentuk sama dengan 1 yaitu $\mathbf{w}^T \mathbf{1}_N = 1$, dimana $\mathbf{1}_N$ adalah vektor satuan dengan dimensi N x 1.

Permasalahan optimalisasi dapat diselesaikan dengan fungsi Lagrange yaitu

$$L = \mathbf{w}^{T} \mathbf{\Sigma} \mathbf{w} + \lambda_{1} \left(\mu_{p} - \mathbf{w}^{T} \mathbf{\mu} \right) + \lambda_{2} \left(1 - \mathbf{w}^{T} \mathbf{1}_{N} \right)$$
 (2.6)

dimana L = fungsi Lagrange

 λ = faktor pengali Lagrange

Untuk mendapatkan penyelesaian nilai optimal dari \mathbf{w} , persamaan (1.6) diturunkan parsial terhadap \mathbf{w} yaitu

$$\frac{\partial L}{\partial \mathbf{w}} = 0$$

$$\frac{\partial}{\partial \mathbf{w}} \left[\mathbf{w}^T \mathbf{\Sigma} \mathbf{w} + \lambda_1 \left(\mu_p - \mathbf{w}^T \mathbf{\mu} \right) + \lambda_2 \left(1 - \mathbf{w}^T \mathbf{1}_N \right) \right] = 0$$

Maka akan diperoleh persamaan pembobotan pada Mean Variance Efficient Portfolio adalah

$$\mathbf{w} = \frac{\mathbf{\Sigma}^{-1} \mathbf{1}_{N}}{\mathbf{1}_{N}^{T} \mathbf{\Sigma}^{-1} \mathbf{1}_{N}}$$
 (2.7)

dimana Σ^{-1} = invers matriks varian-kovarian

Turunan kedua dari fungsi Lagrange terhadap bobot merupakan syarat mencapai minimum :

$$\frac{\partial^2 L}{\partial \mathbf{w}^2} = 2\sum_{\mathbf{w}}$$

dimana elemen-elemen dalam matriks $2\sum > 0$

4. STUDI KASUS

4.1 Data

Data yang akan digunakan dalam analisis studi kasus tugas akhir ini adalah data obligasi yang diterbitkan dua perusahaan finance yang dipublikasikan oleh perusahan pemeringkat obligasi IBPA (*Indonesia Bond Pricing Agency*). Detail data yang digunakan ditampilkan dalam Tabel 4.1.

Tabel 4.1 Obligasi Perusahaan

Tubel 4.1 Obligati i crasanaan							
	Obligasi I	Obligasi II					
Perusahaan	PT. Adira Dinamika Multi	PT. BFI Finance Indonesia					
	Finance						
Nama Obligasi	Obligasi Adira Dinamika	Obligasi BFI Finance					
	Multi Finance V Tahun 2011	Indonesia III Tahun 2011					
	Seri A	Seri A					
Nominal Terbitan	Rp. 612.000.000.000,00	Rp. 90.000.000.000,00					
Kupon	8%	9%					
Jangka Waktu Pembayaran	3 Bulan	3 Bulan					
Kupon							
Tanggal diterbitkan	27 Mei 2011	8 Juli 2011					
Pembayaran Kupon Pertama	27 Agustus 2011	8 Oktober 2011					
Tanggal Jatuh Tempo	31 Mei 2012	12 Juli 2012					

Matrik transisi dan kurva maju yang digunakan adalah data studi *default* dari data histori perusahaan pemeringkat PT. PEFINDO. Data ini adalah data histori perpindahan *rating* perusahaan-perusahaan penerbit obligasi dari berpuluh tahun sebelumnya, sehingga dibentuklah matrik transisi dan kurva maju.

Tabel 4.2 Matriks Transisi PT. PEFINDO

Rating	Rating di akhir periode (%)								
awal	idAAA	idAA	idA	idBBB	idBB	idB	idCCC	idD	NR
idAAA	88.89	5.56	0.00	0.00	0.00	0.00	0.00	0.00	5.56
idAA	3.77	84.91	6.60	0.00	1.89	0.00	0.00	0.94	1.89
idA	0.26	8.88	82.77	2.09	0.78	0.00	0.00	3.39	1.83
idBBB	0.00	0.63	14.11	66.46	4.70	1.25	1.88	7.84	3.13
idBB	0.00	0.00	0.00	20.00	21.54	6.15	4.62	30.43	16.92
idB	0.00	0.00	0.00	8.70	13.04	34.78	4.35	30.43	8.70
idCCC	0.00	0.00	15.79	47.37	10.53	10.53	5.26	10.53	0.00

NR: Not Rated

4.2 Sistem Pemprograman

Dalam pengolahan data dilakukan dengan paket open source software R dan Matlab 7.1.

4.3 Pengolahan Data

Langkah analisis dalam pembahasan penulisan ini, yaitu:

- 1. Inputkan data rating obligasi dan matriks transisi dari badan pemeringkat rating
- 2. Mencari nilai *valuation* berdasarkan nominal obligasi dan kupon obligasi yang disesuaikan dengan *rating* dari obligasi tersebut
- 3. Mencari matriks transisi dari portofolio obligasi sehingga bisa dicari ukuran risiko kredit portofolio obligasi dengan *Credit Metrics*
- 4. Selanjutnya akan dicari pembobotan untuk memperoleh risiko yang minimum dengan menggunakan metode *Mean Variance Efficient Portfolio* (MVEP).

4.4 Hasil dan Analisis

Adapun pembahasan dari analisis langkah-langkah penentuan risiko portofolio obligasi dengan *Credit Metrics* dan pengoptimalisasiannya dengan menggunakan metode *Mean Variance Efficient Portfolio* (MVEP), yaitu:

1. Nilai valuation dari masing-masing obligasi

Akan digunakan sofware R untuk menghitung *valuation* dari kedua obligasi berdasarkan persamaan (2.3). Dengan menginputkan data-data detail dari obligasi dan matriks transisi serta kurva maju, maka akan diperoleh nilai valuation untuk kedua obligasi yang dapat dilihat pada tabel 4.3 dan tabel 4.4.

Tabel 4.3 *Valuation* Obligasi Adira Dinamika Multi Finance V Tahun 2011 Seri A

Rating	Valuation (Rp.(Milyar))
idAAA	807.84000
idAA	789.62160
idA	675.09020
idBBB	594.91920
idBB	436.04790
idB	343.71410
idCCC	211.63140
idD	306.00000

Tabel 4.4 Valuation Obligasi BFI Finance Indonesia III Tahun 2011 Seri A

Rating	Valuation (Rp.(Milyar))
idAAA	122.40000
idAA	119.67452
idA	102.26303
idBBB	90.11714
idBB	66.23540
idB	52.35460
idCCC	32.98102
idD	45.00000

2. Matriks transisi *join probability* dari kedua obligasi

Untuk mencari nilai matrik transisi untuk *join probability* kedua obligasi maka akan dilakukan perhitungan menggunakan software Matlab 7.1. dengan menggunakan persamaan (2.5) dengan,

3. Valuation dari kedua obligasi

Dari output software R diperoleh nilai *valuation* untuk kedua obligasi dengan menggunakan persamaan pada Tabel 3.3.

Tabel 4.5 <i>Valuation</i> untuk Portofolio Kedua Obligasi									
Obligasi 1	Obligasi 2								
		idAAA	idAA	idA	idBBB	idBB	idB	idCCC	idD
	Valuation	122.4000	119.6750	102.2630	90.1171	66.2354	52.3546	32.9810	45.0000
idAAA	807.8400	930.2400	927.5145	910.1030	897.9571	874.0754	860.1946	840.8210	852.8400
idAA	789.6220	912.0216	909.2961	891.8846	879.7387	855.8570	841.9762	822.6026	834.6216
idA	675.0900	797.4902	794.7647	777.3532	765.2073	741.3256	727.4448	708.0712	720.0902
idBBB	594.9190	717.3192	714.5937	697.1822	685.0363	661.1546	647.2738	627.9002	639.9192
idBB	436.0480	558.4479	555.7224	538.3109	526.1650	502.2833	488.4025	469.0289	481.0479
idB	343.7140	466.1141	463.3886	445.9771	433.8312	409.9495	396.0687	376.6951	388.7141
idCCC	211.6310	334.0314	331.3059	313.8944	301.7485	277.8668	263.9860	244.6124	256.6314
idD	306.0000	428.4000	425.6745	408.2630	396.1171	372.2354	358.3546	338.9810	351.0000

Tabel 4.5 Valuation untuk Portofolio Kedua Obligasi

4. Risiko kredit portofolio obligasi

Diperoleh risiko obligasi untuk Obligasi Adira Dinamika Multi Finance V Tahun 2011 Seri A dengan menggunakan software R berdasarkan persamaan (2.4) dengan mean sebesar 756.59700 (Milyar), risiko obligasi berdasarkan nilai standar deviasi sebesar 127.01640 (Milyar) dan berdasarkan nilai level persentil 1% diperoleh risiko sebesar 436.04800 (Milyar). Sementara untuk Obligasi BFI Finance Indonesia III Tahun 2011 Seri A dengan mean sebasar 99.514030 (Milyar), risiko obligasi berdasarkan nilai standar deviasi sebesar 18.33472 (Milyar) dan berdasarkan nilai level persentil 1% sebesar 45.00000 (Milyar). Apabila ingin dibentuk suatu portofolio dari kedua obligasi ini maka akan dicari risiko obligasi portofolio dengan mengalikan nilai valuation gabungan kedua obligasi dengan matriks *join probability* sehingga diperoleh risiko obligasi sebesar 179.82460 (Milyar) dengan mean 840.23600 (Milyar).

5. Bobot untuk portofolio obligasi efisien

Setiap investor menginginkan menanamkan modalnya pada obligasi yang memiliki risiko rendah dengan pendapatan yang besar. Untuk hal ini, maka harus dibentuk suatu portofolio yang optimal dan efisien dengan menggunakan metode *Mean Variance Efficient Portfolio* (MVEP). Dengan menggunakan persamaan (2.7), diperoleh bobot optimal:

$$w = \frac{\Sigma^{-1} \mathbf{1}_2}{\mathbf{1}_2^{\mathsf{T}} \Sigma^{-1} \mathbf{1}_2}$$

$${W_1 \brack W_2} = {0.6639 \brack 0.3361}$$

dengan

 w_1 = bobot Obligasi Adira Dinamika Multi Finance V Tahun 2011 Seri A 66.39%

 w_2 = bobot Obligasi BFI Finance Indonesia III Tahun 2011 Seri A 33.61%

5. KESIMPULAN

Berdasarkan perhitungan studi kasus pada dua obligasi perusahaan diperoleh hasil bahwa Obligasi Adira Dinamika Multi Finance V Tahun 2011 Seri A yang memiliki *rating* idAA+. Memiliki risiko obligasi berdasarkan nilai standar deviasi sebesar 127.0164 (Milyar) dengan mean sebesar 756.597 (Milyar) dan berdasarkan nilai level persentil 1% diperoleh risiko sebesar 436.048 (Milyar). Sementara untuk Obligasi BFI Finance Indonesia III Tahun 2011 Seri A yang memiliki rating idA. Memiliki risiko obligasi berdasarkan nilai standar deviasi sebasar 18.33472 (Milyar) dengan mean sebasar 99.51403 (Milyar) dan berdasarkan nilai level persentil 1% sebesar 45 (Milyar). Risiko apabila dibentuk portofolio untuk kedua obligasi adalah sebesar 179.8246 (Milyar) dengan mean 840.236 (Milyar).

Untuk mendapatkan portofolio obligasi yang optimal dengan risiko yang minimum, maka bobot/proporsi untuk masing-masing obligasi yaitu 66.39% untuk Obligasi Adira Dinamika Multi Finance V Tahun 2011 Seri A, sementara proporsinya sebesar 33.61% untuk Obligasi BFI Finance Indonesia III Tahun 2011 Seri A.

DAFTAR PUSTAKA

IBPA. 2011. Info Detail Obligasi.

http://www.ibpa.co.id/BondMarketData/BondGovernmentDetail/tabid/114/language/en-US/Default.aspx?bondId=ADMF05A [29 April 2012]

IBPA.2011. Info Detail Obligasi.

http://www.ibpa.co.id/BondMarketData/BondGovernmentDetail/tabid/114/language/en-US/Default.aspx?bondId=BFIN04A [29 April 2012]

Morgan, J.P. 1997. *Credit Metrics - Technical Document*. New York: J.P Morgan & Co. Incorporated.

Nurmayanti, P.M & Indrawati N. 2010. *Dasar-dasar Analisis Investasi dan Portofolio*. Palembang: Penerbit Citrabooks Indonesia.

PEFINDO. 2010. *Pefindo's Corporate Default and Rating Transition Study (1996-2010)*. Jakarta: PT. Pemeringkat Efek Indonesia.

Rahardjo, S. 2003. Panduan Investasi Obligasi. Jakarta: PT. Gramedia Pustaka Utama.

Ross, S.M. 1996. Stochastic Processes, 2nd Edition. New York: John Wiley & Sons.

Walpole, R.E. and Raymond H.M. 1995. *Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan, Edisi Keempat.* R.K. Sembiring, penerjemah. Bandung: Penerbit ITB. Terjemahan dari: *Probability and Statistics for Engineers and Scientists, 4th Edition.*

Anonim. Mean-Variance Portfolio Theory.

http://www.math.ust.hk/~maykwok/courses/ma362/Topic2.pdf [19 Maret 2012]