

ISSN: 2339-2541

JURNAL GAUSSIAN, Volume 14, Nomor 2, Tahun 2025, Halaman 401 - 410

Online di: https://ejournal3.undip.ac.id/index.php/gaussian/

ANALISIS TINGKAT PENGANGGURAN TERBUKA BERDASARKAN INDIKATOR SOSIAL DI PROVINSI KEPULAUAN BANGKA BELITUNG MENGGUNAKAN PENDEKATAN REGRESI B-SPLINE

Khoirun Laili Nur Amaliah¹, Diska Amalya², Nila Selviana³, Muthia Afrilita⁴, Dea Saskia Amanda Putri⁵, Ineu Sulistiana⁶

1,2,3,4,5,6* Program Studi Matematika, Universitas Bangka Belitung *e-mail: ineu.sastrawinangun90@gmail.com

DOI: 10.14710/j.gauss.14.2.401-410

Article Info:

Received: 2025-06-02 Accepted: 2025-10-13 Available Online: 2025-10-16

Keywords:

Unemployment; B-spline; Kepulauan Bangka Belitung. Abstract: The Open Unemployment Rate (TPT) is an important indicator in assessing the level of effectiveness of regional development in providing employment. In the Bangka Belitung Islands Province, the dynamics of the TPT have shown a fluctuating pattern over the past few years. The fluctuation of the TPT can be caused by several social indicators such as the Labor Force Participation Rate (TPAK), the Gross Participation Rate (APK) of upper education, and the Poverty Depth Index (P1). Judging from the data obtained, the form of data that has an irregular pattern, the method used in this study is bspline regression which can capture fluctuating patterns in the data. The results show that the b-spline model is very good at capturing fluctuating patterns in the Open Unemployment Rate with several other social indicators seen from the MAE value of 0.05879, RMSE of 0.081630 and Adjusted R-squared of 0.7206 indicating that the bspline regression model is able to explain around 72.06% of the variation in the response variable. Based on the results of the simultaneous test, it shows that variable have a significant effect on TPT, while the partial test it shows APK SMA and P1 have a significant effect on TPT.

1. PENDAHULUAN

Pengangguran merupakan masalah utama yang mempengaruhi pembangunan ekonomi dan juga kesejahteraan masyarakat. Dalam data statistik, ada yang dinamakan Tingkat Pengangguran Terbuka (TPT). Tingkat Pengangguran Terbuka (TPT) biasanya menjadi tolak ukur yang penting dalam menilai tingkat efektivitas pembangunan wilayah dalam menyediakan lapangan kerja. TPT mencerminkan total angkatan kerja yang belum bekerja namun aktif mencari pekerjaan, sehingga angka ini menjadi perhatian utama dalam perumusan kebijakan ketenagakerjaan (Todaro & Smith, 2020).

Beberapa wilayah Indonesia memiliki TPT yang bervariasi. Salah satunya di Provinsi Kepulauan Bangka Belitung, dinamika TPT menunjukkan pola fluktuatif selama beberapa data tahun terakhir. Berdasarkan data yang berasal dari Badan Pusat Statistik, TPT di Provinsi Kepulauan Bangka Belitung pada tahun 2006 mengalami penurunan dari 8,15% menjadi 2,46% pada tahun 2013, kemudian mengalami kenaikan kembali menjadi 5,22% pada tahun 2020, dan sedikit menurun menjadi 4,53% pada tahun 2024 (BPS BABEL, 2024). Pola ini mengindikasikan bahwa pergerakan TPT di daerah tersebut tidak linear, melainkan dipengaruhi oleh berbagai faktor sosial dan ekonomi secara dinamis.

Gambar 1. Data TPT Provinsi Kepulauan Bangka Belitung (2006-2024)

Fluktuasi TPT tersebut dapat disebabkan oleh beberapa indikator sosial seperti Tingkat Partisipasi Angkatan Kerja (TPAK), Indeks Kedalaman Kemiskinan (P1), dan Angka Partisipasi Kasar (APK) jenjang SMA. TPAK merepresentasikan persentase penduduk di usia 15 tahun keatas yang aktif dalam pasar kerja, sedangkan APK jenjang SMA mencerminkan tingkat akses dan keberhasilan pendidikan di jenjang SMA. Sementara itu, P1 menunjukkan rata-rata selisih pengeluaran penduduk miskin dibandingkan dengan garis kemiskinan. P1 menunjukkan kedalaman tingkat dari kemiskinan yang masyarakat alami. Pendidikan dan pelatihan yang berkualitas tentunya dapat meningkatkan sumber daya manusia, sehingga memperbesar peluang individu untuk memperoleh pekerjaan dan meningkatkan standar hidup (Fadila, 2020), sehingga perubahan indikator-indikator tersebut dapat memengaruhi pengangguran secara langsung maupun tidak langsung. Pengangguran dapat memunculkan dampak dalam mengurangi pendapatan masyarakat, hal ini juga berpengaruh dalam mengurangi kemakmuran yang sudah tercapai. Turunnya kemakmuran tentunya akan membentuk kemiskinan (Anggadini, 2015).

Pada penelitian sebelumnya, hubungan antara TPT dan indikator sosial telah banyak dikaji. Pada studi yang berjudul "Analisis Faktor-Faktor yang Mempengaruhi Tingkat Pengangguran Terbuka (TPT) di Provinsi Aceh dengan Regresi Nonparametrik Spline Truncated" menunjukkan bahwa TPAK berpengaruh signifikan terhadap TPT, demikian pula dengan persentase penduduk miskin (Wijaya, 2018). Sementara itu, dalam penelitian "Pemodelan Indeks Kedalaman Kemiskinan di Kabupaten/Kota Provinsi D.1. Yogyakarta Tahun 2017-2022 dengan Regresi Panel" ditemukan bahwa persentase penduduk kemiskinan berpengaruh signifikan terhadap P1, secara tidak langsung mengindikasikan adanya hubungan antara P1 dan TPT (Hamid & Widodo, 2023). Adapun untuk variabel APK jenjang SMA, penelitian dengan judul "Estimasi Kurva Regresi Deret Fourier Dalam Regresi Nonparametrik Multivariabel (Studi Kasus: Data Tingkat Pengangguran Terbuka Di Indonesia Tahun 2020)" menunjukkan bahwa variabel prediktor yaitu salah satunya yaitu APK SMA berpengaruh signifikan terhadap TPT (Nufus, 2023). Penelitian-penelitian tersebut menguatkan pentingnya analisis indikator sosial dalam mempresentasikan TPT.

Meski demikian, hubungan antara TPT dan indikator sosial tersebut tidak selalu bersifat linier. Maka dari itu, pendekatan statistik konvensional seperti regresi linear kemungkinan kurang tepat untuk menangkap dinamika hubungan tersebut. Dalam konteks ini, regresi b-spline hadir sebagai metode non-parametrik yang mampu memodelkan hubungan non-linear secara fleksibel dan efisien. Adapun keunggulan dari metode regresi b-spline adalah fleksibel terhadap data non linier dan mencegah data prediksi mengikuti data (overfitting). Dengan kemampuan untuk menyesuaikan bentuk kurva terhadap data, regresi b-spline dapat digunakan untuk menganalisis tren TPT berdasarkan variabel sosial dengan presisi yang lebih tinggi (Nacher & Akutsu, 2013). Penelitian ini menganalisis tren TPT di Provinsi Kepulauan Bangka Belitung berdasarkan indikator sosial seperti TPAK, APK jenjang SMA, dan P1 pada rentang tahun 2006—

2023 dengan menggunakan metode regresi b-spline. Tujuan dari penelitian ini yaitu untuk menilai kemampuan metode regresi b-spline dalam mempresentasikan data yang memiliki pola fluktuatif dan menganalisis variabel yang berpengaruh signifikan maupun tidak terhadap TPT. Dengan pendekatan regresi b-spline, penelitian ini dapat mengisi kekosongan literatur dan menjadi dasar dalam merumuskan kebijakan pembangunan ketenagakerjaan di Provinsi Kepulauan Bangka Belitung.

TINJAUAN PUSTAKA 2.

Analisis regresi adalah analisis statistika untuk mengetahui hubungan antara variabel dependen dan independen dan mengestimasi kurva regresinya. Terdapat 2 pendekatan dalam estimasi kurva regresi, pendekatan parametrik dan nonparametrik. Pendekatan parametrik digunakan ketika model kurva sudah diketahui, sedangkan nonparametrik digunakan jika model kurvanya tidak diketahui (Tediwibawa et al., 2019). Pendekatan nonparametrik mengasumsikan data berada pada suatu fungsi, dengan penentuan fungsinya berdasarkan sifat smooth yang diasumsikan dimiliki oleh fungsi regresi tersebut (Wahyuningsih et al., 2018). Persamaan regresi nonnparametrik dapat ditulis sebagai berikut:

$$y_i = f(x_i) + \varepsilon_i \quad i = 1, 2, \dots, n \tag{1}$$

Dengan y dan x merupakan variabel dependent dan independent, $f(x_i)$ adalah fungsi regresi, dan ε_i adalah *error* pada pengamatan ke-i.

Spline merupakan salah satu metode yang dapat digunakan dalam pendekatan nonparametrik. Spline adalah polinomial yang setiap segmennya dihubungkan dengan knot k_{ν} , $\gamma = 1,2,...$, dan bersifat kontinu terhadap setiap knotnya sehingga lebih adaptif terhadap karakteristik lokal suatu fungsi daripada polinomial biasa (Fajriyah Yuliati et al., 2020). Pendekatan spline memiliki kelemahan yaitu ketika orde tinggi, jika jumlah titik knot terlalu besar, maka matriks hasil perhitungan mendekati singular, sehingga menyebabkan persamaan normal menjadi sulit diselesaikan (Wahyuningsih et al., 2018).

Kelemahan spline tersebut dapat diselesaikan menggunakan model b-spline. Ketika persamaan 1 diberikan fungsi b-spline dengan m orde dan k titik knot, didapat persamaan sebagai berikut (Rahmawati et al., 2017):

$$y_i = \sum_{i=1}^{m+k} \beta_j \beta_{j-m,m}(x_i) + \varepsilon_i, i = 1, 2, ..., n$$
 (2)

 $y_i = \sum_{i=1}^{m+k} \beta_j \beta_{j-m,m}(x_i) + \varepsilon_i, i = 1,2,...,n$ (2) dengan $\beta_{j-m,m}(x)$ adalah basis spline dan β_j adalah parameter regresinya. Estimasi parameter β β diperoleh menggunakan metode kuadrat terkecil (Ordinary Least Squares), yaitu dengan meminimalkan jumlah kuadrat galat (ε_i). Secara matriks, estimasi parameter dinyatakan sebagai berikut:

$$\hat{\beta} = (B^T B)^{-1} B^T y \tag{3}$$

dengan B merupakan matriks basis spline berukuran $n \times (m + k)$ dan y adalah vektor respon berukuran $n \times 1$.

Pemilihan model b-spline terbaik dilakukan dengan cara memilih orde dan jumlah titik knot yang optimal. Penentuan orde dapat dilakukan dengan melihat pola umum pada data sedangkan total dan lokasi titik knot dilakukan dengan melihat perubahan pola pada bagian tertentu (Sihombing & Famalika, 2022). Penentuan lokasi titik knot yang optimal dapat dilakukan dengan metode Generalized Cross Validation (GCV) (Rahasia et al., 2020). Persamaan metode GCV dinyatakan sebagai berikut:

$$GCV = \frac{MSE(k)}{\left(\frac{1}{n}trace[I-S]\right)^2} , \text{ dengan } MSE = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}(x_i))^2$$
 (4)

dengan n merupakan jumlah data, I adalah matriks identitas berukuran $n \times n$ dan S = $B(B^TB)^{-1}B^T$. Model terbaik ditentukan dengan meninjau nilai GCV dari masing-masing orde dan titik knot dan dipilih orde dan titik knot dengan nilai GCV minimum.

Normalisasi data dipakai untuk menyesuaikan nilai variabel data ke skala yang sama dengan tetap mempertahankan perbedaan nilai (Ambarwari et al., 2020). Metode normalisasi pada penelitian ini yaitu metode Min-Max Normalization, yaitu normalisasi dengan mengubah skala pada data menjadi kisaran 0 dan 1 (Permana & Nur Salisah, 2022). Persamaan untuk menghitung Min-Max Normalization adalah sebagai berikut.

$$x_{norm} = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$
 (5)

dengan x_i adalah nilai yang dinormalisasi, max(x) adalah nilai tertinggi, dan min(x) adalah nilai terendah.

Mean Absolut Error (MAE) merupakan salah satu metode untuk mengukur akurasi model. MAE menggambarkan rata-rata kesalahan (error) dengan tidak memperhatikan arah kesalahan. Berikut adalah persamaan menghitung MAE (Suryanto & Muqtadir, 2019).

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 (6)

Root Mean Square Error (RMSE) adalah metode lain untuk mengukur akurasi model. RMSE dihitung dengan mengakarkan rata-rata selisih kuadrat antara data aktual dan data hasil prediksi. Semakin kecil nilai RMSE, maka semakin baik model yang dihasilkan (Litha Sari & Hasanuddin, 2020). Berikut adalah persamaan untuk menghitung RMSE.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_{aktual} - y_{prediksi})^{2}}{n}}$$
 (7)
Koefisien determinasi (R²) menggambarkan kapasitas variabel independen dalam

mendeskripsikan variabel dependen (Dukalang, 2020). Koefisien determinasi akan berada di interval antara 0 dan 1. Jika nilai R² kecil, maka kemampuan variabel independent dalam mempersentasikan variabel dependent semakin buruk. Pada koefisien determinasi yang telah disesuaikan (R_{adi}^2) , jika nilai R_{adi}^2 tinggi, maka model yang didapat dianggap baik. Persamaan MAE, RMSE, koefisien determinasi adalah sebagai berikut (Handajani et al., 2023): $R_{adj}^2 = 1 - \frac{MSE}{\frac{JKT}{(p-1)}}$

$$R_{adj}^2 = 1 - \frac{MSE}{\frac{JKT}{(p-1)}} \tag{8}$$

dengan JKT adalah jumlah semua kuadrat dan p adalah jumlah variabel.

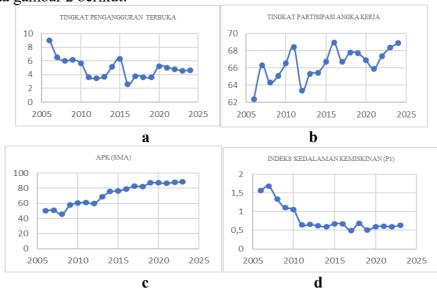
Uji signifikansi parameter digunakan dalam mengukur seberapa besar pengaruh variabel independen terhadap variabel dependen. Terdapat 2 uji yang sering digunakan yaitu uji serentak (uji f) dan uji parsial (uji t). Uji serentak bertujuan mengukur secara serentak pengaruh variabel independen terhadap variabel dependen. Sedangkan uji parsial bertujuan mengukur besar pengaruh dari masing-masing variabel independen terhadap variable dependen.

METODE PENELITIAN 3.

Penelitian ini menggunakan data yang bersifat sekunder dan bersumber dari publikasi Badan Pusat Statistik (BPS) Provinsi Kepulauan Bangka Belitung, yaitu Provinsi Kepulauan Bangka Belitung Dalam Angka tahun 2017-2025 dan Indikator Sosial Provinsi Kepulauan Bangka Belitung tahun 2015. Variabel yang digunakan adalah tingkat pengangguran terbuka (y), tingkat pertisipasi angkatan kerja (x_1) , angka partisipasi kasar (x_2) , dan indeks kedalaman kemiskinan (x_3) di wilayah Bangka Belitung periode 2006-2023.

Langkah analisis data:

- 1. Mengidentifikasi data dengan melakukan statistika deskriptif, normalisasi data, dan
- 2. Menentukan estimasi parameter b-spline dengan menentukan orde dan titik knot
- 3. Memilih model b-spline terbaik
- 4. Melakukan uji akurasi model
- 5. Melakukan uji signifikan parameter
- 6. Menarik kesimpulan


4. HASIL DAN PEMBAHASAN

Statistik deskriptif adalah metode statistika yang bertujuan untuk menggambarkan atau mengilustrasikan data yang telah didapatkan menjadi sebuah informasi. Dalam penelitian ini data terkait tingkat pengangguran sebagai variabel dependen, dengan faktor yang mempengaruhinya yaitu Tingkat Partisipasi Angkatan Kerja (x_1), Angka Partisipasi Kasar SMA (x_2) dan Indeks Kedalaman Kemiskinan (x_3) yang disajikan untuk melihat nilai minimum, maksimum, rata-rata, varian dan standar deviasi. Data penelitian ini bersifat tahunan yang difokuskan dari tahun 2006 – 2023.

Tabel 1. Statistik Deskriptif

Tuo of 1. Statistin B oshi p ti						
Variabel	Minimum	Maksimum	Rata-rata	Varian	Std. Dev	
у	2.6	8.99	4.913684	2.204625	1.484798	
x_1	62.37	68.93	66.43579	3.293559	1.814817	
x_2	45.42	88.28	71.52944	218.5138	14.78221	
x_3	0.49	1.68	0.818333	0.1342971	0.366466	

Untuk mengetahui pola fluktuasi data, disajikan data dalam bentuk diagram garis. Diagram garis merupakan diagram yang menyajikan pola perubahan atau pergerakan data dari satu periode ke periode lainnya. Diagram garis data variabel dari tahun 2006 hingga 2023 akan disajikan pada gambar 2 berikut:

Gambar 2. Diagram Garis Data (a) TPT, (b) TPAK, (c) APK (SMA), (d) P1

Transformasi data merupakan langkah untuk mengubah skala data ke bentuk yang berbeda. Karena data yang digunakan dalam penelitian ini memiliki skala yang bervariasi, maka dilakukan proses rescaling. Pada penelitian ini dipilih metode normalisasi Min-Max, yaitu teknik yang menyesuaikan nilai data ke dalam rentang 0 sampai 1. Pola data antara variabel dependen dan independen dapat ditinjau dari hasil gambar scatterplot. Jika hasil scatterplot diketahui bukan menurut pola tertentu, data yang digunakan relevan dengan menggunakan regresi non-parametrik. Scatterplot antara variabel dependen dan variabel independen disajikan pada gambar berikut:

Gambar 3. Scatterplot (a) TPT dan TPAK, (b) TPT dan APK SMA, (c) TPT dan P1

Berdasarkan gambar diatas tampak jelas bahwa pola keterkaitan antara variabel dependen TPT dengan variabel independen TPAK, APK SMA dan P1 memberikan gambaran dengan pola yang tidak beraturan sehingga data ini relevan dengan menggunakan pendekatan regresi nonparametrik.

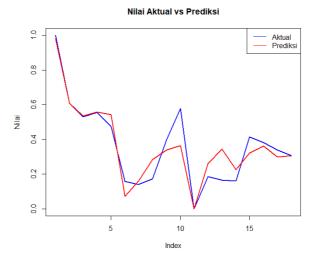
Dalam membentuk model nonparametrik b-spline diperlukan orde dan titik knot optimal, hal ini dilihat dari nilai GCV minimum. Hasil GCV disajikan pada tabel 3.

Tabel 2. Nilai GCV

				10001 201 11101		
Orde				Knot	GCV	
x1	x2	х3	x 1	x2	х3	GCV
2	2	2	0,01	0,99	0,5	0,001485
2	2	2	0,01	0,99	0,99	0,001545
2	2	2	0,01	0,99	0,01	0,001552
			••••		••••	
2	3	3	0,99	0,99	0,01	0,004234
3	3	3	0,99	0,99	0,01	0,005033
3	3	3	0,99	0,01	0,01	0,005383
3	3	3	0,99	0,5	0,01	0,005433

Berdasarkan tabel diatas didapatkan bahwa model b-spline terbaik ditinjau dari nilai GCV terkecil yang memiliki nilai 0,001485. Pembentukan model terbaik dengan nilai x_1 berorde 2 dengan titik knot x_1 pada titik 0,01, x_2 berorde 2 dengan titik knot x_2 pada titik 0,99 dan x_3 berorde 2 dengan titik knot x_3 pada titik 0,5.

Orde dan titik knot optimal yang telah didapatkan dari GCV akan dimodelkan dengan pendekatan nonparametrik b-spline. Untuk estimasi parameter β pada model (2) dapat dilihat pada tabel 4 berikut ini:


Tabel 3. Estimasi parameter

Variabel	Parameter	Estimasi Parameter
x_1	β11	0.1203
	β 12	-0.1169
	β13	-0.3755
x_2	β21	0.6969
	β22	0.6184
	β 23	0.6587
x_3	β31	0.3554
	β32	1.3905
	β 33	0.7875

Berdasarkan tabel diatas model regresi nonparametrik b-spline terbaik dapat dituliskan dengan persamaan sebagai berikut:

$$y = 0.1203B_{1,3}(x_1) - 0.1169B_{2,3}(x_1) - 0.3755B_{3,3}(x_1) + 0.6969B_{1,3}(x_2) + 0.6184B_{2,3}(x_2) + 0.6587B_{3,3}(x_2) + 0.3554B_{1,3}(x_3) + 1.3905B_{2,3}(x_3) + 0.7875B_{3,3}(x_3)$$

Setelah menemukan model b-spline, maka nilai estimasi bisa dihitung dan hasil estimasi dapat dilihat pada gambar 4.

Gambar 4. Grafik Estimasi Model B-Spline

Dari gambar diatas menunjukkan bahwa distribusi hasil yang diperkirakan dari data aktual untuk jelas. Hal ini menunjukkan bahwa regresi b-spline mampu mengadaptasi lebih baik dengan pola data yang naik atau turun dengan titik knot dan kurva yang dihasilkan relatif halus.

label 4. Hasil Akurasi Model						
	Mean Absolute Error Root Mean Squared Error Adjusted					
	(MAE)	(RMSE)	R-Squared			
Model B-Spline	0.05879	0.081630	0.7206			

Berdasarkan nilai MAE dan RMSE yang dihasilkan, dapat terlihat angka hampir mendekati 0 yaitu MAE sebesar 0.05879 dan RMSE sebesar 0.081630, sehingga hal ini dapat disimpulkan model tersebut sangat baik dalam menangkap pola data yang fluktuatif. Selain itu, dilihat dari nilai Adjusted R-squared sebesar 0,7206 mengindikasikan bahwa model regresi b-spline mampu menjelaskan sekitar 72,06% variasi pada variabel respon. Nilai ini cukup baik menunjukkan bahwa model memiliki tingkat kecocokan yang baik terhadap data.

	Tabel 5. Hasil Uji A	ANOVA Per	ngujian Serenta	k
	Derajat Bebas	F _{hitung}	p-value	Keterangan
		-		
Regresi	8	5.872	0.01021	Tolak H ₀
Error	0.1262			

Hasil uji ANOVA terhadap model b-spline menunjukkan bahwa secara keseluruhan variabel memiliki pengaruh terhadap TPT dalam model ini. Hal ini dilihat dari besaran nilai p-value yang kurang dari α sehingga berhasil tolak H_0 . Dapat diambil kesimpulan bahwa paling sedikit satu variabel yang berpengaruh terhap TPT.

Tabel 6. Hasil pengujian Parameter Secara Parsial

	Estimasi	Std. Error	t-value	p-value	Ket	
β11	0.1203	0.3894	0.309	0.76525	Tidak	
					signifikan	
β 12	-0.1169	0.2164	-0.540	0.60382	Tidak	
					signifikan	

β13	-0.3755	0.2797	-1.342	0.21628	Tidak
β21	0.6969	0.3437	2.027	0.07716	signifikan (Sedikit)
					Signifikan
β 22	0.6184	0.2563	2.413	0.04232	Signifikan
β 23	0.6587	0.2759	2.387	0.04406	Signifikan
β31	0.3554	0.4003	0.888	0.40047	Tidak
					signifikan
β32	1.3905	0.3314	4.195	0.00302	Signifikan
β33	0.7875	0.2605	3.022	0.01650	Signifikan

Pengujian parsial dilakukan untuk melihat signifikansi masing-masing koefisien b-spline terhadap variabel respon. Pengujian parsial menggunakan uji t untuk menilai signifikansi setiap koefisien basis B-spline. Secara teoretis, model nonparametrik tidak mensyaratkan asumsi normalitas residual. Oleh karena itu, penggunaan uji t pada penelitian ini dilakukan secara pendekatan asimtotik (*approximation*) sebagaimana diterapkan pada penelitian (Handajani et al., 2023).

Hasil estimasi menunjukkan bahwa sebagian besar koefisien pada b-spline variabel P1 signifikan, khususnya koefisien β_{32} (p = 0,00302) dan β_{33} (p = 0,01650), yang mengindikasikan pengaruh kuat dari bentuk non linier variabel P1 terhadap TPT. Hasil ini sejalan dengan penelitian (Hamid & Widodo, 2023) yang menunjukkan hasil salah satu variabel yaitu kemiskinan berpengaruh terhadap pengangguran Pada variabel APK SMA, koefisien β_{22} (p = 0,04232) dan β_{23} (p = 0,04406) juga menunjukkan signifikansi pada taraf 5%,. Hasil ini sejalan dengan peneltiian (Nufus, 2020) menunjukkan bahwa variabel prediktor yaitu salah satunya yaitu APK SMA berpengaruh signifikan terhadap TPT. Sementara itu, seluruh koefisien b-spline dari variabel TPAK tidak signifikan secara parsial (p > 0,05). Hal ini dapat mengindikasikan adanya pengaruh non linier secara keseluruhan dari variabel tersebut, yang tidak tampak secara signifikan pada masing-masing fungsi basis secara parsial.

5. KESIMPULAN

Berdasarkan hasil yang diperoleh, dapat ditarik kesimpulan bahwa model b-spline terbaik diperoleh dengan kombinasi orde dan titik knot tertentu, yaitu orde 2 untuk TPAK, APK SMA dan P1, dengan titik knot optimal pada masing-masing variabel. Model ini ditentukan berdasarkan nilai *Generalized Cross Validation* (GCV) terkecil sebesar 0,001485, yang menunjukkan tingkat akurasi dan kecocokan model yang sangat baik terhadap data. Hasil uji serentak menunjukkan bahwa paling sedikit terdapat satu variabel independen yang berpengaruh terhadap TPT. Berdasarkan hasil uji parsial menunjukkan APK SMA dan P1 berpengaruh terhadap TPT. Nilai Adjusted R-squared sebesar 0,7206 mengindikasikan model dapat menjelaskan 72,06% variasi TPT. Selain itu uji akurasi model menggunakan MAE, RMSE menunjukkan bahwa model yang dihasilkan cukup baik dalam memprediksi TPT berdasarkan indikator sosial yang dianalisis.

DAFTAR PUSTAKA

Ambarwari, A., Adrian, Q. J., & Herdiyeni, Y. (2020). Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning untuk Identifikasi Tanaman. *Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi)*, 1(3), 117–122.

Anggadini, F. (2015). Analisis Pengaruh Angka Harapan Hidup, Angka Melek Huruf, Tingkat Pengangguran Terbuka Dan Pendapatan Domestik Regional Bruto Perkapita Terhadap Kemiskinan Pada Kabupaten/ Kota Di Provinsi Sulawesi Tengah Tahun 2010-2013. *Katalogis*, *3*, 40–49.

- BPS BABEL. (2024). *BPS Provinsi Kepulauan Bangka Belitung*. https://bangkakab.bps.go.id/id/statistics-table/2/ODEjMg==/tingkat-pengangguranterbuka-tpt-.html
- Dukalang, H. H. (2020). FINANCIAL PERFORMANCE ANALYSIS FOR RETURN ON ASSETS WITH A MULTIPLE LINIER REGRESSION APPROACH. *Euler: Jurnal Ilmiah Matematika, Sains Dan Teknologi, 8*(2), 42–50. https://doi.org/10.34312/euler.v8i2.10405
- Fadila, R. (2020). Maret 2020 Pengaruh Indeks Pembangunan Manusia (IPM) dan Pertumbuhan Ekonomi terhadap Tingkat Kemiskinan di Provinsi Sumatera Barat periode tahun. 3(1).
- Fajriyah Yuliati, I., Robinson Sihombing, P., B., Permata No, J., & Timur, J. (2020). Pemodelan Fertilitas di Indonesia Tahun 2017 Menggunakan Pendekatan Regresi Nonparametrik Kernel dan Spline. *Jurnal Statistika Dan Aplikasinya (JSA)*, 4(1), 48–60.
- Hamid, Y., & Widodo, E. (2023). Pemodelan Indeks Kedalaman Kemiskinan di Kabupaten/Kota Provinsi D.I. Yogyakarta Tahun 2017-2022 dengan Regresi Data Panel. In Emerging Statistics and Data Science Journal (Vol. 1, Issue 3).
- Handajani, S. S., dkk (2023). Pemodelan Produksi Padi di Provinsi Jawa Timur dengan Regresi Pemodelan Produksi Padi di Provinsi Jawa Timur dengan Regresi Non Parametrik B-Spline Non Parametrik B-Spline. *PHYTAGORAS: Jurnal Matematika Dan Pendidikan Matematika*, 18(2), 159–175. http://journal.uny.ac.id/index.php/pythagoras
- Litha Sari, N., & Hasanuddin, T. (2020). Analisis Performa Metode Moving Average Model untuk Prediksi Jumlah Penderita Covid-19. *Indonesian Journal of Data and Science (IJODAS)*, *I*(3), 87–95. https://kawalcovid19.id/
- Nacher, J. C., & Akutsu, T. (2013). Analysis on critical nodes in controlling complex networks using dominating sets. *Proceedings 2013 International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2013*, 649–654. https://doi.org/10.1109/SITIS.2013.106
- Nufus, M. R. (2023). Estimasi Kurva Regresi Deret Fourier Dalam Regresi Nonparametrik Multivariabel (Studi Kasus: Data Tingkat Pengangguran Terbuka Di Indonesia Tahun 2020) [Institut Teknologi Sepuluh Nopember.]. https://repository.its.ac.id/96928/
- Permana, I., & Nur Salisah, F. (2022). Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation. *IJIRSE: Indonesian Journal of Informatic Research and Software Engineering*, 2(1), 67–72.
- Rahasia, Z., Resmawan, R., & Rahmawaty Isa, D. (2020). Pemodelan Data Time Series dengan Pendekatan Regresi Nonparametrik B-Spline. *AKSIOMA: Jurnal Matematika Dan Pendidikan Matematika*, 11(1), 9–16. https://bi.go.id
- Rahmawati, A. S., Ispriyanti, D., & Warsito, B. (2017). PEMODELAN KASUS KEMISKINAN DI JAWA TENGAH MENGGUNAKAN REGRESI NONPARAMETRIK METODE B-SPLINE. *JURNAL GAUSSIAN*, *6*(1), 11–20. http://ejournal-s1.undip.ac.id/index.php/gaussian
- Sihombing, P. R., & Famalika, A. (2022). Penerapan Analisis Regresi Nonparametrik dengan Pendekatan Regresi Kernel dan Spline. *Jurnal Ekonomi Dan Statistik Indonesia*, *2*(2), 172–181. https://doi.org/10.11594/jesi.02.02.05
- Suryanto, A. A., & Muqtadir, A. (2019). PENERAPAN METODE MEAN ABSOLUTE ERROR (MEA) DALAM ALGORITMA REGRESI LINEAR UNTUK PREDIKSI PRODUKSI PADI. *SAINTEKBU: Jurnal Sains Dan Teknologi*, *1*, 11.
- Tediwibawa, R., Yuniarti, D., Memi, D., & Hayati, N. (2019). Regresi Nonparametrik Spline Birespon Untuk Memodelkan Persentase Penduduk Miskin dan Indeks Kedalaman Kemiskinan di Kalimantan Timur Tahun 2015. *Jurnal EKSPONENSIAL*, 10(1), 21–28.

- Todaro, M. P., & Smith, S. C. (2020). Economic Development. Thirteenth Edition. In *Pearson* (Issue 13th Edition).
- Wahyuningsih, T. D., Handajani, S. S., & Indriati, D. (2018). Penerapan Generalized Cross Validation dalam Model Regresi Smoothing Spline pada Produksi Ubi Jalar di Jawa Tengah. *Indonesian Journal of Applied Statistics*, 117–125.
- Wijaya, A. F. H. (2018). Analisis Faktor-Faktor Yang Mempengaruhi Tingkat Pengangguran Terbuka (Tpt) Di Provinsi Aceh Dengan Regresi Nonparametrik Spline Truncated. Institut Teknologi Sepuluh Nopember.