

ISSN: 2339-2541

JURNAL GAUSSIAN, Volume 12, Nomor 1, Tahun 2023, Halaman 104 - 115

Online di: https://ejournal3.undip.ac.id/index.php/gaussian/

PERAMALAN JUMLAH PENUMPANG KERETA API DI PULAU JAWA MENGGUNAKAN METODE HOLT WINTERS EXPONENTIAL SMOOTHING DAN FUZZY TIME SERIES MARKOV CHAIN

Santa Agata Mendila¹, Iut Tri Utami², Puspita Kartikasari³

^{1,2,3} Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro *Email: santaagatamendila@gmail.com

DOI: 10.14710/j.gauss.12.1.104-115

Article Info:

Received: 2022-11-29 Accepted: 2023-01-15 Available Online: 2023-05-04

Keywords:

Multiplicative Holt Winters Exponential Smoothing; Fuzzy Time Series Markov Chain; Number of Train Passengers; sMAPE.

Abstract: One of the public transportation choices by the public is the train. The number of train passengers on the island of Java often increases and decreases in certain months. PT.KAI can monitor the number of train passengers by forecasting. Forecasting aims to predict the number of train passengers so that PT.KAI is ready to provide the best service. This study uses monthly data on the number of train passengers on Java Island from January 2015 to February 2020. This study uses multiplicative holt winters exponential smoothing and fuzzy time series markov chain. The multiplicative Holt Winters exponential smoothing method is used on data that contains trend and seasonal elements that experience data fluctuations simultaneously. The fuzzy time series markov chain method is a combination of the fuzzy time series with the markov chain which aims to obtain the greatest probability using the transition probability matrix. Based on the analysis results, it can be concluded that the multiplicative holt winters exponential smoothing method is better at predicting the number of train passengers on Java Island because the value of sMAPE multiplicative holt winters exponential smoothing is smaller, it is 3,0643% and the sMAPE fuzzy time series markov chain value is 5,2955%.

1. PENDAHULUAN

Memindahkan barang dan jasa dari titik asal ke titik tujuan dikenal sebagai transportasi (Badan Pusat Statistik, 2020). Transportasi sangat penting dalam mendorong ketahanan sosial, meningkatkan persatuan dan kesatuan, dan meningkatkan kemakmuran ekonomi (Undang-Undang Republik Indonesia Nomor 23 Tahun 2007 tentang Perkeretaapian). Kereta api merupakan salah satu moda transportasi umum yang paling banyak diminati karena dapat memindahkan banyak orang dan barang dalam waktu yang relatif singkat (Nurjanah *et al.*, 2018).

Sering terjadi peningkatan jumlah masyarakat yang menggunakan keret api di Pulau Jawa pada bulan-bulan tertentu, terutama pada bulan-bulan yang termasuk hari libur atau liburan panjang. Pada bulan tertentu terjadi penurunan jumlah penumpang karena tidak terdapat hari libur atau jumlah hari yang lebih sedikit dibandingkan bulan lain. Perekonomian Indonesia dipengaruhi oleh volume penumpang kereta api yang tinggi dan rendah, sehingga PT KAI harus siap untuk memberikan tingkat layanan tertinggi (Dewi *et al.*, 2018). Peramalan jumlah penumpang kereta api untuk periode yang akan datang merupakan salah satu metode untuk menentukan besarnya pertambahan dan penurunan jumlah penumpang. Metode peramalan yang digunakan dalam penelitian ini yaitu metode *holt winters exponential smoothing* dan *fuzzy time series markov chain*.

Masalah aspek musiman dan tren dalam data diselesaikan dengan pendekatan *Holt Winters Exponential Smoothing*. Metode ini menggunakan penghalusan eksponensial dengan tiga kali pembobotan. Metode *fuzzy time series markov chain* merupakan penggabungan metode *fuzzy time series* dan rantai *markov* untuk mencapai hasil terbaik.

Penelitian ini mengkaji peramalan jumlah penumpang kereta api di pulau Jawa dengan menggunakan fuzzy time series markov chain dan metode holt winters exponential smoothing. pendekatan holt winters exponential smoothing digunakan dalam penyelidikan ini Karena dapat digunakan pada data dengan komponen tren dan musiman. Penelitian ini menggunakan metode fuzzy time series markov chain karena dapat digunakan dengan pola data apapun. Tujuan dari penelitian ini adalah untuk mengidentifikasi hasil peramalan terbaik berdasarkan tingkat kesalahan terendah. Analisis data pada penelitian ini menggunakan bantuan Graphical User Interface (GUI) R.

2. TINJAUAN PUSTAKA

Makridakis et al. (1999) mendefinisikan peramalan sebagai teknik untuk membuat prediksi masa depan berdasarkan data historis. Multiplicative Holt Winters Exponential Smoothing dan Fuzzy Time Series Markov Chain merupakan metode peramalan yang digunakan dalam penelitian ini.

a. Holt Winters Exponential Smoothing model Multiplicative

Data musiman yang cenderung naik atau turun dikenakan pendekatan model pemulusan eksponensial Holt Winters multiplikatif (berfluktuasi). Rumus peramalan dalam model holt winters exponential smoothing adalah sebagai berikut.

Rumus untuk menghitung peramalan periode ke depan

$$F_{t+m} = (L_t + mb_t)S_{t-s+m} \tag{1}$$

Rumus untuk menghitung peramalan data training

$$F_t = (L_{t-1} + b_{t-1})S_{t-s} (2)$$

Rumus pada tiap-tiap pemulusan yang digunakan sebagai berikut:

1. Pemulusan (*smoothing*) (*level*)

$$L_{t} = \alpha \frac{Y_{t}}{S_{t-s}} + (1 - \alpha)(L_{t-1} + b_{t-1})$$
(3)

2. Pemulusan (*smoothing*) pola *trend*

$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1} \tag{4}$$

3. Pemulusan (*smoothing*) musiman (*seasonal*)

$$S_t = \gamma \frac{Y_t}{L_t} + (1 - \gamma)S_{t-s} \tag{5}$$

Keterangan:

: menyatakan pembobot *smoothing* musiman $(0 \le \gamma \le 1)$ γ

: menyatakan pembobot *smoothing level* $(0 \le \alpha \le 1)$ α

β : menyatakan pembobot *smoothing trend* $(0 \le \beta \le 1)$

 Y_t : menyatakan data ke-t

: menyatakan smoothing level pada periode ke-t

: menyatakan *smoothing trend* pada periode ke-t

: menyatakan *smoothing* musiman pada periode ke-t

: menyatakan panjang musiman

: menyatakan smoothing level pada periode ke t-1 L_{t-1} : menyatakan *smoothing trend* pada periode ke t-1 b_{t-1}

: menyatakan periode yang ingin diprediksi F_t

: menyatakan jumlah periode ke depan

Penggunaan metode *multiplicative holt winters exponential smoothing* diperlukan nilai awal. Berikut merupakan proses inisialisasi atau penentuan nilai awal.

1. Penentuan nilai awal pada smoothing level, dapat dilihat pada rumus persamaan berikut:

$$L_s = \frac{1}{s}(Y_1 + Y_2 + \dots + Y_k)$$
 (6)

2. Penentuan nilai awal pada *smoothing trend*, dapat dilihat pada rumus persamaan berikut:

$$b_{s} = \frac{1}{s} \left(\frac{Y_{s+1} - Y_{1}}{s} + \frac{Y_{s+2} - Y_{2}}{s} + \dots \frac{Y_{s+s} - Y_{s}}{s} \right)$$
(7)

3. Penentuan nilai awal pada *smoothing* musiman, dapat dilihat pada persamaan berikut:

$$S_k = \frac{Y_k}{L_s} \tag{8}$$

Keterangan:

s: menyatakan panjang musiman

 L_s : menyatakan nilai awal *smoothing level*

 T_s : menyatakan nilai awal *smoothing trend*

 S_k : menyatakan nilai awal *smoothing* musiman dengan k=1,2,... s

 Y_k : menyatakan data ke 1,2,3...s

b. Fuzzy Time Series Markov Chain

Langkah pertama: Pembentukan universe of discourse (U)

$$U = [D_{min} - d_1, D_{max} + d_2] (9)$$

 D_{min} merupaka nilai terendah pada data dan D_{max} merupakan nilai tertinggi pada data. D_1 dan D_2 adalah dua bilangan bulat positif yang tepat dimana bilangan positifnya ditentukan oleh peneliti.

Langkah kedua: Menentukan panjang interval dan nilai tengah

1. Pembentukan banyaknya interval kelas dengan menerapkan rumus sturges sebagai berikut.

$$k = 1 + 3{,}322 \times \log(n) \tag{10}$$

k merupakan jumlah interval dan n merupakan jumlah data

2. Pembentukan panjang interval

$$l = \frac{[(D_{max} + d_2) - (D_{min} - d_1)]}{k}$$
 (11)

l: panjang interval D_{min} : nilai minimum D_{max} : nilai maksimum k: jumlah interval

3. pembagian semesta pembicaraan

$$u_k = [D_{min} - d_1 + (k-1) l; D_{min} - d_1 + kl)$$
 (12)

4. Penentuan nilai tengah

$$m_i = \frac{(batas\ bawah\ kelas\ ke - i + batas\ atas\ kelas\ ke - i)}{2}$$
 (13)

i merupakan banyaknya himpunan fuzzy.

Langkah ketiga: Menentukan fuzzy set

Aturan-aturan yang dapat diterapkan adalah sebagai berikut.

- 1. Apabila data (Y_t) termasuk dalam u_i maka derajat keanggotaannya yaitu 1, dan u_{i+1} yaitu 0,5 serta nilai derajat keanggotaan lainnya yaitu 0
- 2. Apabila data (Y_t) termasuk dalam u_i , 1 < i < k maka derajat keanggotaannya yaitu 1, dan u_{i-1} dan u_{i+1} yaitu 0,5 serta nilai derajat keanggotaan lainnya yaitu 0
- 3. Apabila data (Y_t) termasuk dalam u_k maka derajat keanggotaannya yaitu 1,dan u_{i-1} yaitu 0,5 serta derajat keanggotaan lainnya yaitu 0

Cara untuk mempermudah menentukan fuzzy set A yaitu pada tiap-tiap himpunan fuzzy A_i dimana (i = 1, 2, ... k) dimasukkan dalam jumlah interval yang telah ditentukan, dimana A_i , A_2 , ... A_n didefinisikan sebagai berikut:

$$A_{1} = \left\{\frac{1}{u_{1}}, \frac{0.5}{u_{2}}, \frac{0}{u_{3}}, \dots, \frac{0}{u_{k}}\right\}$$

$$A_{2} = \left\{\frac{0.5}{u_{1}}, \frac{1}{u_{2}}, \frac{0.5}{u_{3}}, \dots + \frac{0}{u_{k}}\right\}$$

$$A_{k} = \left\{\frac{0}{u_{1}}, \dots, \frac{0.5}{u_{k-1}}, \frac{1}{u_{k}}\right\}$$

Langkah keempat: Proses fuzzyfikasi pada data

Proses mengklasifikasikan data ke dalam himpunan fuzzy dikenal sebagai fuzzyifikasi. Apabila data merupakan interval u_i , maka data dapat difuzzifikasi kedalam A_i

Langkah kelima: Fuzzy Logical Relationship (FLR)

FLR ditentukan dengan cara menghubungkan fuzzy A_i yang merupakan data sebelumnya (*current state*) menuju A_i yang merupakan data setelahnya (*next state*).

Langkah keenam: Fuzzy Logical Relationship Group (FLRG)

FLRG diperoleh dari FLR yang telah terbentuk. Apabila A_i mempunyai hubungan menuju A_{j1} , A_{j2} sampai dengan A_{jn} , maka dapat dikelompokkan ke dalam FLRG $A_i \rightarrow A_{j1}$, A_{j2} , A_{jn}

Langkah ketujuh: Pembentukan matriks peluang transisi markov.

Matriks transisi markov diperoleh dengan menggunakan FLRG yang telah terbentuk.

$$P_{ij} = \frac{M_{ij}}{M_i}; i, j = 1, 2, \dots k$$
 (14)

Keterangan:

 M_{ij} : satu langkah nilai transisi dari *state* A_i ke A_j

 M_i : nilai data yang termasuk dalam state A_i

Langkah kedelapan: Proses defuzzifikasi nilai peramalan.

Aturan-aturan yang dapat diterapkan dalam proses defuzzifikasi peramalan adalah sebagai berikut.

1. Apabila FLRG tidak memiliki relasi $(A_i \to \emptyset)$ maka nilai hasil peramalan yang diperoleh yaitu menggunakan nilai tengah (m_i) dari u_i dengan menggunakan rumus berikut.

$$F_t = m_i \tag{15}$$

2. Apabila FLRG memiliki relasi satu ke satu $(A_i \to A_k)$ maka nilai hasil peramalan yang diperoleh yaitu menggunakan nilai tengah m_k dari u_k dengan/\ menggunakan rumus berikut.

$$F_t = m_k P_{ik} = m_k \tag{16}$$

3. Apabila FLRG memiliki relasi satu ke banyak $(A_i \rightarrow A_1, A_2, ... A_n, j = 1, 2, ..., n)$, maka nilai hasil peramalan dapat diperoleh dengan menggunakan rumus berikut.

$$F_{t} = m_{1}P_{j1} + m_{2}P_{j2} + \dots + m_{j-1}P_{j(j-1)} + Y_{(t-1)}P_{j} + \dots + m_{k}P_{jk}$$

$$(17)$$

Keterangan:

 $m_1, \dots m_k$: nilai tengah dari $u_1, \dots u_k$

Y(t-1): data historis pada waktu ke t-1

Langkah kesembilan : Penentuan nilai penyesuaian

Perhitungan nilai penyesuaian pada hasil peramalan dilakukan untuk mengamati kesalahan yang terjadi. Aturan-aturan nilai penyesuaian untuk nilai peramalan adalah sebagai berikut.

1. Apabila A_i memiliki komunikasi dengan A_i , pada saat $t-1=A_i$ dan terjadi perpindahan naik menuju A_j pada saat t, dimana (i < j), maka rumus nilai penyesuaian yang digunakan sebagai berikut.

$$D_{t1} = \left(\frac{l}{2}\right) \tag{18}$$

Keterangan:

l: panjang interval

2. Apabila A_i memiliki komunikasi dengan A_i , pada saat $t-1=A_i$ dan terjadi perpindahan turun menuju A_j pada saat t, dimana (i > j), maka rumus nilai penyesuaian yang digunakan sebagai berikut.

$$D_{t1} = -\left(\frac{l}{2}\right) \tag{19}$$

Keterangan:

l: panjang interval

3. Apabila A_i pada saat $F(t-1) = A_i$ dan terjadi perpindahan maju menuju A_{i+s} pada saat t, dimana $(1 \le s \le k - i)$, maka rumus nilai penyesuaian yang digunakan sebagai berikut:

$$D_{t2} = \left(\frac{l}{2}\right) s, (1 \le s \le k - i) \tag{20}$$

Keterangan:

s: jumlah perpindahan maju

4. Apabila A_i pada saat $F(t-1) = A_i$ dan terjadi perpindahan transisi mundur menuju A_{i-v} pada saat $t, (1 \le v \le i)$, maka rumus nilai penyesuaian yang digunakan sebagai berikut:

$$D_{t2} = -\left(\frac{l}{2}\right)v, (1 \le v \le i) \tag{21}$$

Keterangan:

v: jumlah perpindahan mundur

Langkah kesepuluh: Perhitungan hasil ramalan akhir.

Peramalan akhir diperoleh dengan menggunakan aturan-aturan sebagai berikut.

1. Apabila FLRG A_i memiliki relasi satu menuju ke banyak dan A_{i+1} memiliki akses dari A_i dengan A_i berkomunikasi dengan A_i maka dapat menggunakan rumus persamaan berikut.

$$F'_{t} = F_{t} + D_{t1} + D_{t2} = F_{t} + \left(\frac{l}{2}\right) + \left(\frac{l}{2}\right)$$
 (22)

2. Apabila FLRG A_i memiliki relasi satu menuju ke banyak dan A_{i+1} memiliki akses dari A_i tetapi A_i tidak berkomunikasi dengan A_i maka dapat menggunakan rumus persamaan berikut.

$$F'_{t} = F_{t} + D_{t2} = F_{t} + \left(\frac{l}{2}\right) \tag{23}$$

3. Apabila FLRG A_i memiliki relas satu menuju ke banyak dan A_{i-2} memiliki akses dari A_i tetapi A_i tidak berkomunikasi dengan A_i maka dapat menggunakan rumus persamaan berikut.

$$F'_{t} = F_{t} - D_{t2} = F_{t} - 2\left(\frac{l}{2}\right) = F_{t} - l$$
 (24)

Jika v adalah jump step, maka dapat menggunakan rumus persamaan berikut.

$$F'_{t} = F_{t} \pm D_{t1} \pm D_{t2} = F_{t} \pm \left(\frac{l}{2}\right) \pm \left(\frac{l}{2}\right) v$$
 (25)

Keterangan:

: Nilai peramalan yang disesuaikan

: Nilai peramalan awal : Panjang interval : Nilai penyesuaian : NIlai Penyesuaian

Ukuran Ketepatan Peramalan

Mean Square Error (MSE)

Mean Square Error adalah salah satu ukuran dalam mengevaluasi pentingnya ketepatan hasil dan memilih model yang optimal. Pendekatan terbaik adalah yang menghasilkan nilai MSE terendah (Makridakis et al., 1999). Berikut ini adalah rumus MSE.

$$MSE = \frac{1}{n} \sum_{t=1}^{n} (e_t)^2$$
 (26)

Dengan $e_t = x_t - F_t$

Keterangan:

 e_t : error

 x_t : data aktual

 F_t : hasil peramalan

Symmetric Mean Absolute Percentage Error (sMAPE)

Menurut Makridakis dan Hibon (2000), nilai hasil peramalan dapat dievaluasi dengan menggunakan ukuran sMAPE (symmetric Mean Absolute Percentage Error).sMAPE dapat digunakan untuk mengatasi permasalahan besarnya error ketika nilai dari A_t (data actual) mendekati nol dan besarnya perbedaan nilai mutlak error ketika nilai A_t ($data\ actual$) lebih besar dari F_t (data hasil ramalan) atau sebaliknya. Rumus perhitungan sMAPE adalah sebagai berikut.

$$sMAPE = \frac{2}{n} \sum_{t=1}^{n} \frac{|F_t - A_t|}{(|A_t| + |F_t|)} x 100\%$$
 (27)

: ukuran sampel : data aktual

: data hasil ramalan Semaki kecil nilai sMAPE yang diperoleh maka ketepatan peramalan yang

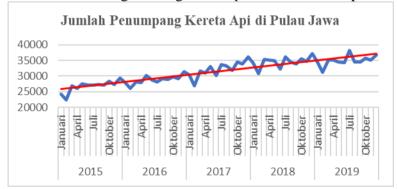
diperoleh semakin baik. Kriteria nilai sMAPE disajikan pada Tabel 1.

JURNAL GAUSSIAN Vol. 12, No. 2, Tahun 2023

Tabel 1. Kriteria Nilai sMAPE

Nilai sMAPE	Ketepatan Peramalan
<10%	Sangat Baik
10%-20%	Baik
20%-50%	Cukup Baik
>50%	Buruk

3. METODOLOGI PENELITIAN


Jenis data yang digunakanidalam penelitianiini yaitu data sekunder yang diperoleh dari website resmi BPS yaitu *https://bps.go.id*. Data penelitian yang digunakan adalah data bulanan jumlah total penumpang kereta api Jabodetabek dan Non Jabodetabek dimulai pada periode Januari 2015 sampai dengan Februari 2020.

Sebanyak 60 data dimulai Januari 2015 sampai Desember 2019 digunakan sebagai data *training*. Sebanyak 2 data dimulai Januari 2020 sampai Februari 2020 digunakan sebagai data *testing*. Pengolahan data penelitian ini mengguggunakan *Microsoft Excel* dan *Graphical User Interface* R (GUI-R). Berikut adalah bagaimana proses penelitian dilakukan.

- 1. Menginput data
- 2. Mengidentifikasi data menggunakan plot data time series
- 3. Melakukan pemodelan dan peramalan metode *holt winters exponential smoothing* model *multiplicative*
- 4. Melakukan pemodelan dan peramalan metode fuzzy time series markov chain
- 5. Menghitung tingkat akurasi peramalan pada masing-masing metode
- 6. Membandingkan hasil tingkat akurasi kedua metode
- 7. Interpretasi dan kesimpulan

4. HASIL DAN PEMBAHASAN

Identifikasi data dilakukan dengan menganalisis plot time series pada Gambar 1

Gambar 1. Plot time series data jumlah penumpang kereta api di Pulau Jawa

Berdasarkan Gambar 1 dapat diketahui bahwa data dipengaruhi oleh unsur musiman karena data berulang pada bulan tertentu, yaitu cenderung terjadi kenaikan bulan Desember dan terjadi penurunan bulan Februari. Pada Gambar 1 dapat diketahui bahwa data mengalami unsur musiman multiplikatif atau tejadi peningkatan jumlah penumpang setiap tahun pada bulan yang mengalami musiman. Selain mengalami pola musiman dapat dianalisis bahwa data mengalami unsur *trend* karena data mengalami peningkatan dari bulan Januari 2015 sampai Desember 2019 dan dapat dilihat dengan jelas pada garis merah pada Gambar 1

a. Penerapan Metode Multiplicative Holt Winters Exponential Smoothing

Proses inisialisasi dilakukan terlebih untuk menentukan nilai awal pemulusan pada level, trend dan musiman. Nilai musiman yang digunakan pada penelitian ini yaitu s = 12 yang dimulai pada data ke-1 sampai data ke-12.

• Nilai awal pemulusan level

$$L_{12} = \frac{1}{12}(Y_1 + Y_2 + \dots + Y_{12}) = \frac{1}{12}(24254 + 26841 \dots + 29328) = 26718,42$$

• Nilai awal pemulusan pola trend
$$b_{12} = \frac{1}{s} \left(\frac{Y_{13} - Y_1}{s} + \dots + \frac{Y_{24} - 12}{s} \right) = \frac{1}{12} \left(\frac{27886 - 24254}{12} + \dots + \frac{31530 - 29328}{12} \right) = 175,125$$
• Nilai awal pemulusan pola musiman

• Nilai awal pemulusan pola musiman
$$S_1 = \frac{Y_1}{L_{12}} = \frac{24254}{26718,42} = 0,9077, \text{ nilai awal pemulusan pola musiman dilakukan dengan}$$

rumus yang sama sampai dengan $S_{12} = 1,0977$

Parameter optimal yang diperoleh dari Rstudio, nilai alpha (α) sebesar 0,3903403, beta (β) sebesar 0, dan gamma (γ) sebesar 1. Nilai parameter yang diperoleh digunakan untuk melakukan perhitungan pemulusan keseluruhan (level), pemulusan kecenderungan (trend), dan pemulusan musiman (seasonal)

Tabel 2. Peramalan Data Training Holt Winters Exponential Smoothing model Multiplicative

Bulan	Jumlah	Level	Trend	Seasonal	Peramalan
	Penumpang				
Januari 2015	27886	28385,6496	175,125	0,9824	24412,9721
Februari 2015	26058	29547,1558	175,125	0,8819	23938,1694
:	:	:	:	:	:
November 2019	35228	35287,8160	175,125	0,9983	35824,5385
Desember 2019	36710	34863,3782	175,125	1,0530	38373,5159

b. Penerapan Metode Fuzzy Time Series Markov Chain

Tahapan berikut dapat digunakan untuk mengaplikasikan metode fuzzy time series

Langkah Pertama: Pembentukan Semesta Pembicaraan U

$$U = [D_{min} - d_1, D_{max} + d_2]$$

$$U = [22394 - 94; 38303 + 97]$$

$$U = [22300; 38400]$$

Langkah Kedua: Pembentukan Interval

1.
$$k = 1 + 3.322 \times \log(n) = 6.907 \approx 7 \text{ kelas}$$

1.
$$k = 1 + 3{,}322 \times \log(n) = 6{,}907 \approx 7 \text{ kelas}$$

2. $l = \frac{[(D_{max} + D_2) - (D_{min} - D_1)]}{k} = \frac{[(38303 + 97) - (22394 - 94)]}{7} = 2300$

Γabel 3. Pembagian Semesta Pembicaraan

Batas atas	Batas bawah	Nilai tengah
22300	24600	23450
24600	26900	25750
26900	29200	28050
29200	31500	30350
31500	33800	32650
33800	36100	34950
36100	38400	37250

Langkah Ketiga: Menentukan fuzzy set A

$$A_{1} = \left\{ \frac{1}{u_{1}}, \frac{0.5}{u_{2}}, \frac{0}{u_{3}}, \frac{0}{u_{4}}, \frac{0}{u_{5}}, \frac{0}{u_{6}}, \frac{0}{u_{7}} \right\}$$

$$A_{2} = \left\{ \frac{0.5}{u_{1}}, \frac{1}{u_{2}}, \frac{0.5}{u_{3}}, \frac{0}{u_{4}}, \frac{0}{u_{5}}, \frac{0}{u_{6}}, \frac{0}{u_{7}} \right\}$$

$$A_{3} = \left\{ \frac{0}{u_{1}}, \frac{0.5}{u_{2}}, \frac{1}{u_{3}}, \frac{0.5}{u_{4}}, \frac{0}{u_{5}}, \frac{0}{u_{6}}, \frac{0}{u_{7}} \right\}$$

$$A_{4} = \left\{ \frac{0}{u_{1}}, \frac{0}{u_{2}}, \frac{0.5}{u_{3}}, \frac{1}{u_{4}}, \frac{0.5}{u_{5}}, \frac{0}{u_{6}}, \frac{0}{u_{7}} \right\}$$

$$A_{5} = \left\{ \frac{0}{u_{1}}, \frac{0}{u_{2}}, \frac{0}{u_{3}}, \frac{0.5}{u_{4}}, \frac{1}{u_{5}}, \frac{0.5}{u_{6}}, \frac{0}{u_{7}} \right\}$$

$$A_{6} = \left\{ \frac{0}{u_{1}}, \frac{0}{u_{2}}, \frac{0}{u_{3}}, \frac{0}{u_{4}}, \frac{0.5}{u_{5}}, \frac{1}{u_{6}}, \frac{0.5}{u_{7}} \right\}$$

$$A_{7} = \left\{ \frac{0}{u_{1}}, \frac{0}{u_{2}}, \frac{0}{u_{3}}, \frac{0}{u_{4}}, \frac{0}{u_{5}}, \frac{0.5}{u_{6}}, \frac{1}{u_{7}} \right\}$$

Langkah Keempat: Fuzzifikasi

Tabel 4. Fuzzifikasi

		1 4001 7.1	uzzmikasi	
Ta	hun	Bulan Jumlah		Fuzzifikasi
			Penumpang	
20)15	Januari	24254	A_1
20)15	Februari	22394	A_1
	:	:	:	:
20)19	Desember	36710	A_7

Langkah kelima: Fuzzy Logical Relationship(FLR)

Tabel 5. Fuzzy Logical Relationship (FLR)

1 40	CI J. I WLLY LOGIC	ai Meianonship (1 121()
Tahun	Bulan Jumlah		FLR
		Penumpang	
2015	Januari	24254	-
2015	Februari	22394	$A_1 \rightarrow A_1$
2015	Maret	26841	$A_1 \rightarrow A_2$
:	:	:	:
2019	Desember	36710	$A_6 \rightarrow A_7$

Langkah keenam: Fuzzy Logical Relationship Group (FLRG)

Tabel 6. Fuzzy Logical Relationship Group (FLRG)

Current State	Next State	FLRG
A_1	$1(A_1),1(A_2)$	$A_1 \to 1(A_1), 1(A_2)$
A_2	$1(A_2), 2(A_3), 1(A_5)$	$A_2 \to 1(A_2), 2(A_3), 1(A_5)$
A_3	$1(A_2), 10(A_3), 3(A_4), 1(A_5)$	$A_3 \to 1(A_2), 10(A_3), 3(A_4), 1(A_5)$
A_4	$1(A_2), 3(A_3), 2(A_5), 2(A_6)$	$A_4 \to 1(A_2), 3(A_3), 2(A_5), 2(A_6)$
A_5	$3(A_4), 2(A_5), 2(A_6), 1(A_7)$	$A_5 \to 3(A_4), 2(A_5), 2(A_6), 1(A_7)$
A_6	$2(A_4), 2(A_5), 12(A_6), 3(A_7)$	$A_6 \to 2(A_4), 2(A_5), 12(A_6), 3(A_7)$
A_7	$3(A_6)$	$A_7 \rightarrow 3(A_6)$

Langkah ketujuh: Matriks Probabilitas Transisi

	A_1	A_2	A_3	A_4	A_5	A_6	A_7
A_1	1/2	1/2	0	0	0	0	0
A_2	0	1/4	2/4	0	1/4	0	0
A_3	0	1/15	10/15	3/15	1/15	0	0
A_4	0	1/8	3/8	0	2/8	2/8	0
A_5	0	0	0	3/8	2/8	2/8	1/8
A_6	0	0	0	2/19	2/19	12/19	3/19
A_7	0	0	0	0	0	3/3	0

Langkah kedelapan: Peramalan awal

Tabel 7. Peramalan Awal

Tahun	Bulan Jumlah		Peramalan
		Penumpang	Awal
2015	Januari	24254	-
2015	Februari	22394	25002
2015	Maret	26841	24072
:	:	:	:
2019	Desember	36710	34762,08

Langkah kesembilan: Menghitung nilai penyesuain pada hasil peramalan

Tabel 8. Nilai Penyesuaian

Tahun	Bulan Jumlah		Nilai
		Penumpang	Penyesuaian
2015	Januari	24254	-
2015	Februari	22394	0
2015	Maret	26841	2300
:	:	:	:
2019	Desember	36710	2300

Langkah kesepuluh: Hasil ramalan disesuaikan

Tabel 9. Hasil Ramalan disesuaikan

	Tuoti yi Tuoti Tuntuutii uleesaantan					
Tahun	Bulan	Jumlah	Peramalan	Nilai	Ramalan	
		Penumpang	Awal	Penyesuaian	Disesuaikan	
2015	Januari	24254	-	-	-	
2015	Februari	22394	25002	0	25002	
2015	Maret	26841	24072	2300	26372	
:	:	:	:	:	:	
2019	Desember	36710	34762,08	2300	31025	

c. Peramalan Data Jumlah Penumpang Kereta Api di Pulau Jawa Dua Periode ke Depan

Model yang dibangun menggunakan data *training* diperiksa melalui data *testing*. Data testing terdiri dari dua data, masing-masing untuk Januari 2020 dan Februari 2020.

1. Multiplicative Holt Winters Exponential Smoothing

$$F_{(Januari\ 2020)} = (L_{60} + 1(b_{60}))S_{49} = (34863,3782 + 1(175,125)1,0063 = 35258,6702)$$

$$F_{(Februari\ 2020)} = (L_{60} + 2(b_{60}))S_{50} = (34863,3782 + 2(175,125)0,9081 = 31975,8079)$$

2. Fuzzy Time Series Markov Chain

Perhitungan jumlah penumpang kereta api di Pulau Jawa bulan Januari 2020 dilakukani dengan melihat FLRG pada data sebelumnya yaitu data pada bulan Desember 2019. Fuzzifikasi pada data Desember 2019 adalah A_7 dan FLRG yang terbentuk adalah $A_7 \rightarrow A_6$ yang relasinya bersifat satu ke satu maka rumus persamaan yang digunakan adalah sebagai berikut.

$$F_t = m_k P_{ik} = m_k$$

$$F_{(Januari\ 2020)} = m_6 P_{76} = m_6$$

$$F_{(Ianuari\ 2020)} = 34950$$

Data pada bulan Januari 2020 termasuk ke dalam u_5 sehingga fuzzifikasi untuk data pada bulan Januari 2020 adalah A_5 . Nilai penyesuaian peramalan dihitung berdasarkan FLR $A_7 \rightarrow A_5$, nilai penyesuaian yang diperoleh adalah sebagai berikut.

$$D_{t1} = -\left(\frac{l}{2}\right) = -\left(\frac{2300}{2}\right) = -1150$$

$$D_{t2} = -\left(\frac{l}{2}\right)2 = -\left(\frac{2300}{2}\right)2 = -2300$$

Hasil peramalan yang disesuaikan untuk periode Januari 2020 adalah sebagai berikut.

$$F'_t = F_t - D_{t1} - D_{t2}$$

$$F'_{(Januari\ 2020)} = 34950 - 1150 - 2300$$

 $F'_{(Januari\ 2020)} = 31500$

Peramalan bulan Februari 2020 dilakukan dengan melihat FLRG pada data sebelumnya yaitu data pada bulan Januari 2020. Fuzzifikasi pada data Desember 2019 adalah A_5 dan FLRG yang terbentuk adalah $A_5 \rightarrow A_4, A_5, A_6, A_7$ yang relasinya bersifat satu ke banyak maka rumus persamaan yang digunakan yaitu sebagai berikut.

$$\begin{split} F_{(Februari\ 2020)} &= m_4 P_{54} + Y_{(Januari\ 2020)} P_{55} + m_6 P_{56} + m_7 P_{57} \\ F_{(Februari\ 2020)} &= \left(30350 x \frac{3}{8}\right) + \left(33473 x \frac{2}{8}\right) + \left(34950 x \frac{2}{8}\right) + \left(37250 x \frac{1}{8}\right) \\ F_{(Februari\ 2020)} &= 33143,25 \end{split}$$

Data pada bulan Januari 2020 termasuk ke dalam u_5 sehingga fuzzifikasi untuk data pada bulan Januari 2020 adalah A_5 . Nilai penyesuaian peramalan dihitung berdasarkan FLR $A_5 \rightarrow A_5$, nilai penyesuaian yang diperoleh adalah 0. Hasil peramalan yang disesuaikan untuk periode Januari 2020 adalah sebagai berikut.

$$F'_t = F_t + 0$$

 $F'_{(Februari\ 2020)} = 33143,25$

d. Perbandingan Tingkat Akurasi Peramalan Holt Winters Exponential Smoothing dan Fuzzy Time Seris Markov Chain

Tabe	Tabel 10. Tingkat Akurasi Peramalan				
Metode	MSE(data training)	sMAPE (data testing)			
Holt Winters Exponential	1406610,4169	3,0643 %			
Smoothing model					
Multiplicative					
Fuzzy Time Series Markov	1590798,5913	5,2955 %			
Chain					

Dari Tabel 10 hasil yang diperoleh yaitu hasil tingkat akurasi sMAPE metode *holtI* wintersiexponential smoothing model multiplicativeidiperoleh sebesar 3,0643% lebih kecil dibandingkan nilai sMAPE fuzzy time series markov chain yang diperoleh yaitu 5,2955%. Kesimpulan yang diperoleh yaitu metode *holt winters exponential smoothing* lebih akurat dibandingkan fuzzyi timei seriesi markovi chaini dalam meramalkani jumlah penumpang kereta di Pulau Jawa.

5. KESIMPULAN

Peramalan data *trainingg* metode *holt winters exponential smoothing* model *mutiplicative* dan *Fuzzy Time Series markov chain* pada data jumlah penumpang kereta api di Pulau Jawa menghasilkan nilai peramalan yang mendekati data aktualnya. Hasil tingkat akurasi peramalan sMAPE metode *holti wintersi exponential smoothing* model *multiplicativei* diperoleh sebesari 3,0643% lebih kecil dibandingkan *fuzzyi time series markov chain* yaitu 5,2955%. Kesimpulan yang diperoleh yaitu metode *holt winters exponential smoothing* lebih akurat dibandingkan *fuzzy time series markov chain* dalam melakukan peramalan jumlah penumpang kereta di Pulau Jawa.

DAFTAR PUSTAKA

Badan Pusat Statistik. (2020). Statistik Transportasi Darat 2022. diakses 03 September 2022,dari https://www.bps.go.id/subject/17/transportasi.html#subjekViewTa b4

Badan Pusat Statistik. (2022). Jumlah Penumpang Kereta Api, 2006-2022. Diakses 03 September 2022, dari https://www.bps.go.id/subject/17/transportasi.html #subjekViewTab3

- Cheng, C.H., Chen, T.L., Teoh, H.J., and Chiang, C.H. (2008). Fuzzy Time-Series Based On Adaptive Expectation Model For TAIEX Forecasting. Expert Systems with Application, 34(2),1126-1132
- Dewi, L. F., & Darsyah, M. Y. (2018). Peramalan Jumlah Penumpang Kereta Api Menggunakan Metode Moving Average dan Holt Winter. *Prosiding Seminar* Nasional Mahasiswa Unimus: Vol.1
- Elfajar, A.B., Setiawan, B. D., & Dewi, C. (2017). Peramalan Jumlah Kunjungan Wisatawan Kota Batu Menggunakan Metode Time Invariant Fuzzy Time Series. *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, 1(2), 85-94
- Makridakis, S., and Hibon, M. (2000). The M3-Competition: Results, Conclusion and Implications. *International Journal of Forecasting*, Vol.16, 451-476.
- Makridakis, S., Wheelwright, S. C., and McGree, V. E. (1999). *Metode dan Aplikasi Peramalan (edisi ke-2)*. Jakarta: Erlangga.
- Nurjanah, I. S., Ruhiat, D., dan Andiani, D. (2018). Implementasi Model Autogressive Integrated Moving Average (ARIMA) untuk Peramalan Jumlah Penumpang Kereta Api di Pulau Sumatera. *Jurnal Teorema*, 3(2), 145-156
- Tsaur, Ruey-Chyn. (2012). A Fuzzy Time Series-Markov Chain Model With an Application to Forecast the Exchange Rate Between the Taiwan and US Dollar. *International Journal of Innovative Computing, Information and Control*, Vol.8,No.7(B)
- Undang-Undang Republik Indonesia Nomor 23 Tahun 2007 tentang Perkeretaapian
- Wajdi, S. (2022). Pemodelan Harga Saham BSI dengan Metode Fuzzy Time Series Markov Chain. *Jurnal Pendidikan*, Vol.6, No.1
- Zadeh, L. 1965. Fuzzy Sets. Journal Information and Control, Vol. 8, 338-353